
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2010

Integrated Bioassays for Screening Chemical and
Biological Species
Baozhen Chen
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Chen, Baozhen, "Integrated Bioassays for Screening Chemical and Biological Species" (2010). Graduate Theses and Dissertations.
11859.
https://lib.dr.iastate.edu/etd/11859

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11859&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11859&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F11859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11859?utm_source=lib.dr.iastate.edu%2Fetd%2F11859&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

 

Integrated bioassays for screening chemical and biological species  
 

 

 

By 

 

 

Baozhen Chen 
 

 

 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Major: Electrical Engineering 

 

Program of Study Committee: 

Santosh Pandey, Major Professor 

Liang Dong 

Jiming Song 

Sumit Chaudhary 

Jaeyoun Kim 

 

 

 

 

 

 

 

 

 

 

Iowa State University 

Ames, Iowa 

2010 

Copyright © Baozhen Chen, 2010. All rights reserved. 



www.manaraa.com

ii 
 

  
 

 

 

 

To my beloved Mom and Dad



www.manaraa.com

iii 
 

  
 

Table of Content 

List of Figures .................................................................................................................................. v 

Abstract ........................................................................................................................................... ix 

Chapter 1: Scalable, CMOS-compatible Floating-gate FET for Detection of Charged 

Biochemical Molecules ................................................................................................................... 1 

1.1 Introduction .........................................................................................................................................1 

1.1.1  Ion Selective FET ...................................................................................................................2 

1.1.2 Chemoreceptive Neuron MOS ................................................................................................3 

1.2 Proposed Umbrella-Shaped Field Effect Transistor (UGFET) ...........................................................4 

1.3 UGFET Design and Analysis ..............................................................................................................5 

1.4 UGFET Fabrication .............................................................................................................................9 

1.5 Experimental Results ........................................................................................................................ 10 

1.5.1 Electrical Characterization ....................................................................................................11 

1.5.2 Transconductance Measurement ...........................................................................................12 

1.5.3 Subthreshold Measurement ...................................................................................................15 

1.6 Discussion ........................................................................................................................................ 17 

Chapter 2: MEMS Bioassay for Characterizing Nematode Phenotype ........................................ 19 

2.1 Introduction ...................................................................................................................................... 19 

2.2 Device Design and Analysis ............................................................................................................. 22 

2.2.1 Fabrication of Microfluidic Devices .....................................................................................22 

2.2.2 Sample  and Medium Preparation .........................................................................................23 

2.2.3 O. dentatum Larvae as Test Nematodes ................................................................................24 

2.2.4 Data Capture and Analysis ....................................................................................................24 

2.2.5 Calculation of Locomotion Parameters .................................................................................25 

2.3 Experimental Results ........................................................................................................................ 28 

2.3.1 Amplitude Measurements ......................................................................................................28 

2.3.2 Wavelength Measurements ...................................................................................................29 

2.3.3 Tangential Force for Forward Movement .............................................................................31 

2.3.4 Velocity Measurements .........................................................................................................34 

2.3.5 Frequency Measurements ......................................................................................................36 

2.3.6 Worm Image Tracking Program ............................................................................................37 



www.manaraa.com

iv 
 

  
 

2.4 Discussion ........................................................................................................................................ 40 

Chapter 3:  Automated Screening of Nematodes in Sinusoidal Microfluidic Channels ............... 44 

3.1 Introduction ...................................................................................................................................... 44 

3.2 Fixed Sine-wave Devices ................................................................................................................. 46 

3.2.1 Sinusoidal Channel Designs ..................................................................................................46 

3.2.2 Device Fabrication ................................................................................................................50 

3.2.3 O. dentatum Larvae as Test Nematodes ................................................................................51 

3.2.4 Sample Preparation and Loading ...........................................................................................52 

3.2.5 Data Capture and Analysis ....................................................................................................52 

3.2.6 Calculation of Locomotion Parameters .................................................................................53 

3.2.7 Experimental Results .............................................................................................................54 

3.3 Frequency Modulated (FM) Sine-wave Channels ............................................................................ 57 

3.3.1 FM Channel Designs .............................................................................................................57 

3.3.2 Device Fabrication ................................................................................................................59 

3.3.3 Extraction of Locomotion Parameters ...................................................................................60 

3.3.4 Experimental Results .............................................................................................................61 

3.4 Amplitude Modulated (AM) Sine-wave Channels ........................................................................... 65 

3.4.1 AM Channel  Designs ...........................................................................................................65 

3.4.2 Device Fabrication, Experimental Protocols and Data Analysis ...........................................66 

3.4.3 Experimental Results .............................................................................................................67 

3.5 Discussion ........................................................................................................................................ 71 

Chapter 4: Conclusions and Future Scope .................................................................................... 74 

References ..................................................................................................................................... 76 

Appendix 1: Image-tracking Software .......................................................................................... 81 

Appendix 2: Mask Designs for Sine-wave Channels ................................................................... 86 

Appendix 3: Publications and Awards .......................................................................................... 90 

Acknowledgements ....................................................................................................................... 92 

 



www.manaraa.com

v 
 

  
 

List of Figures 

Figure 1.1: Schematic views of a MOSFET (a) and ISFET (b) …………………….……..3  

Figure 1.2:  Illustration of a CνMOS transistor..……………………………….…………..4 

Figure 1.3: (a) Cross-section of the proposed UGFET and its symbolic  

representation with an equivalent capacitance model (b) ……………...…………………..5 

Figure 1.4: Three-dimensional UGFET cross-section built with the Synopsis 

 device simulator. ……………….…………………………….………………….…………..7 

Figure 1.5: Three-dimensional electrical potential distribution of UGFET 

 using Sentaurus TCAD simulation tools …..……………………………….….…………...7 

Figure 1.6: Floating-gate voltage dependence on the control-gate voltage 

 for the UGFET device ………….………………………….…………………….…………..9 

Figure 1.7: Floating-gate voltage dependence on the charge density over 

 the sensing area of UGFET device..…..……………… …………………………………..9 

Figure 1.8: Fabricated chip packaged in DIP 40 pin (a) with CMFET  

and UGFET devices and a snapshot (b) of an array of UGFET devices. ……….………….10 

Figure 1.9: Snapshot of the fabricated chip showing single and an array 

 of UGFET devices with bit and word lines for easy readout. …………….….………….11 

Figure 1.10: UGFET I-V measurements under dry conditions: with  

varying drain voltages ………….…………………………………………….………….12  

Figure 1.11: UGFET I-V measurements under dry conditions: drain 

 current with varying control-gate voltages..………………………..…….……..……….12 

Figure 1.12: UGFET I-V and transconductance curves with DI water, 0.01% 

poly Histidine, poly aspartic acid and 0.5% poly glutamic acid solutions………………...14 



www.manaraa.com

vi 
 

  
 

Figure 1.13: Subthreshold I-V curves tested for different concentrations  

of poly acrylic acid (PAA). ………………...……………………………….….………….15 

Figure 1.14: Relative voltage shifts with polyelectrolyte concentrations. ……….….…….16 

Figure 2.1: Examples of different nematode species.………………………….………….20 

Figure 2.2: Microfluidic chamber and larvae. ……..……………………………………….23 

Figure 2.3: The soft lithography steps used in the microfluidic channel fabrication……...23 

Figure 2.4:  Measurement of locomotion parameters. (a): velocity (V),  

amplitude (A) and wavelength (λ) from recorded videos. (b): oscillation frequency …….26 

Figure 2.5: Statistical distribution of the measured amplitude for SENS and  

LEVR O. dentatum larvae. ………….…..….….….……....….….….……..….….……..….29 

Figure 2.6: Measured wavelength for SENS and LEVR O. dentatum larvae 

 without any drug exposure, SENS and LEVR O. dentatum larvae exposed 

 to 1M levamisole, and H. glycines SCN nematodes…..……..….….……..….….……..….30 

Figure 2.7: (a) The tangential force FT exerted by each segment of the nematode‘s  

body results in the characteristic sinusoidal movement. (b) The amplitude to  

wavelength ratio for SENS and LEVR larvae without any drug exposure, SENS  

and LEVR larvae exposed to 1M levamisole, and H. glycines SCN 

nematodes..……..….….………………………………………….………………..….….32 

Figure 2.8: Velocity measurements for SENS (dotted) and LEVR (solid) 

 O. dentatum with and without exposure to levamisole..…………………….….………….36 

Figure 2.9: Video processing and extraction of motility parameters using an  

image-tracking program....……..………………………………………….….………….38 

 



www.manaraa.com

vii 
 

  
 

Figure 2.10: Individual worm tracks of O. dentatum nematodes obtained  

from the image-tracking program..………………… …………………….….…..…….39 

Figure 2.11: Distinct changes in the locomotion patterns of O. dentatum 

 larvae in the microfluidic device at higher concentrations of levamisole ………….42 

Figure 3.1: Fixed sine-wave channels: ……..…………………………………..……….….47 

Figure 3.2: Snapshots of a single nematode confined in sine-wave  

channel of fixed amplitude and changing wavelengths. ……………….…..……………..47 

Figure 3.3: High throughput chip with sinusoidal wave channel. ……………….…..……49 

Figure 3.4: Microphotographs of fabricated sine-wave channels in an experiment. …….…51 

Figure 3.5: Velocity plots of the two different isolates of O. dentatum  

nematodes (SENS and LEVR) in fixed sine-wave channels with 120 µm amplitude………54 

Figure 3.6: Velocity plots for the LEVR isolate in sine-wave channels. …………56 

Figure 3.7: Velocity plots for the SENS isolate in sine-wave channels..…………….. ……56 

Figure 3.8: Amplitude modulation and frequency modulation channels….………….......…58 

Figure 3.9: Fabricated FM sine-wave channels……………. …………………………...…60 

Figure 3.10: The average instantaneous velocity with respect to the wavelength 

 is shown for SENS and LEVR O. dentatum larvae..……………..…………………...….62 

Figure 3.11: The measured turning probability with respect to the wavelength 

 for SENS and LEVR O. dentatum larvae………………………….………………………63 

Figure 3.12: The measured stopping probability with respect to the wavelength  

for SENS and LEVR O. dentatum larvae..……………..………………. ………………64 

Figure 3.13: The cut-off region of the wavelength is shown for SENS 

 and LEVR O. dentatum larvae. …………………….……………...………………......……65 



www.manaraa.com

viii 
 

  
 

Figure 3.14: Amplitude modulated sinusoidal wave channels. ……………….…………67 

Figure 3.15: The measured average instantaneous velocity with respect to  

the amplitude for SENS and LEVR O. dentatum larvae…..……………………………..….68 

Figure 3.16: The measured turn probability with respect to the amplitude 

 for O. dentatum SENS and LEVR larvae……….……..………………………………..…69 

Figure 3.17: The measured stop probability with respect to the amplitude  

for SENS and LEVR O. dentatum larvae. ……….…………………………………….....…70 

Figure 3.18: The cut-off region in AM device for SENS and LEVR O. dentatum larvae.... 71 

Figure A1.1: Sample graphic user interface for the image tracking software. ............... …81 

Figure A1.2: Screenshot of a running video data analysis. ...............................................…82 

Figure A1.3: Three processing steps of the raw video…..………..........................…..84 

Figure A2.1: Snapshots of the fixed sinusoidal channels.......................................................88 

Figure A2.2: Snapshots of the amplitude modulated sinusoidal wave channels…..............88 

Figure A2.3: Snapshot of the wavelength modulated sinusoidal wave channels.................89 

 

  



www.manaraa.com

ix 
 

  
 

Abstract 

  The idea of having an entire biological assay system on a single silicon wafer is 

promising with significant advantages in improving experimental throughput and sensitivity. 

This thesis presents three unique biological assays combining microfluidics and 

microelectronics technologies for high-throughput screening of biological samples: electronic 

sensors for detecting biomolecular charges, microchannels to characterize worm locomotion, 

and modulated trenches for differentiating mutant phenotypes.  

  The first chapter reports a novel floating-gate biosensor to detect and sense nano-

scale charged particles such as charged poly amino acids. The device is fully CMOS 

compatible and has the ease of mass production. The new architecture of the floating gate 

enables scaling of the device area and incorporation of on-chip readout lines. Testing results 

show a strong sensitivity to the polarity and concentration of different poly amino acids 

tested. CMOS compatibility of the device is particularly useful while designing autonomous 

systems for biochemical sensing which require the on-chip integration of sensors, control 

circuitry, memory devices, and power lines. 

The second chapter presents microfluidic bioassays for the phenotypic 

characterization of a certain class of animal and plant microorganisms called nematodes. 

Nematodes cause huge economic loss every year to agriculture and farm animals. In humans, 

exposure to meat or crops infected with nematodes cause long-term depression and reduced 

work productivity. However, with prolonged exposure to anthelmintic drugs, nematodes have 

evolved into new strains with varying levels of resistance to known drugs. With a goal to 

differentiate different isolates, the bioassay measures phenotype using parameters of 
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nematode locomotion. We characterize two different species of nematode and two isolates 

within one species: a plant parasite Soybean Cyst Nematode (SCN) and two isolates of an 

animal parasite Oesophagostomum dentatum. Parameters of sinusoidal motion such as 

propagation velocity, wavelength, wave amplitude, and oscillation frequency depend on the 

levamisole-sensitivity and strain of parasitic nematode. There are significant differences 

between the two strains (SENS and LEVR) and the two species (O. dentatum and SCN). This 

microfluidic technology advances present-day nematode migration assays and provides a 

better quantification and increased drug sensitivity. It is anticipated that the bioassay will 

facilitate study of resistance to other anthelmintic drugs that affect locomotion. 

  In the third chapter we report a new scheme to passively screen and sort different 

isolates of parasitic nematodes that may be visually indistinguishable. Unlike previous 

devices that immobilize worms or chemically treat them in micro scale chambers, we allow 

the nematodes to pass through modulated sinusoidal trenches and observe their locomotion at 

real-time. We then define and characterize locomotion parameters that help us identify and 

distinguish isolates automatically. We demonstrate this simple scheme of sorting whole 

animals using two isolates of O. dentatum. In addition, a custom image tracking software is 

developed to enable automated extraction and analysis of the experiments performed.  Such 

bioassays are critical towards advancing high-throughput screening methods on whole 

organisms – a field that is relatively new in the scientific community. 
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Chapter 1 

Scalable, CMOS-compatible Floating-gate FET for Detection of Charged 

Biochemical Molecules  

1.1 Introduction  

In recent years, there has been significant advances in the area of non-invasive, 

portable sensors that would couple chemical and biological entities with semiconductor 

devices and integrated circuits [1-5]. These include electronic sensors for the detection of 

chemicals, DNA hybridization, enzyme reactions, action potentials and protein complexes. 

To address the issues of post-processing, label-free detection and bulky instrumentation in 

traditional electrochemical sensors [2-6], a CMOS-compatible extended floating-gate field-

effect transistor (EGFET) device was demonstrated for the electronic detection of 

electrolytes [7] and DNA hybridization [8,9]. In these EGFETs, the floating-gate is 

capacitively coupled to the sensing area (where biochemical species are adsorbed) in one 

direction and to the control-gate (where the readout voltage is applied) in the other direction 

[7-9]. The threshold voltage is a function of the applied control-gate voltage and the charge 

on the sensing area. Fluctuations in the amount of biochemical charge are electronically 

detected by a corresponding shift in the threshold voltage. However, with the present 

floating-gate topology of EGFETs, the sensing area is large (40 µm×40 µm to 100 µm×100 

µm) [6] and device scalability is a challenge. Furthermore, a large sensing area lowers the 

device sensitivity to charge fluctuations [7]. As a solution, non-planar EGFETs have been 

proposed to shrink the sensing area by combining MEMS micromachining and CMOS 

fabrication steps [4]. In this chapter, we review two classical microelectronic chemical 
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sensors and demonstrate a new architecture for an EGFET device.  Compared to previous 

EGFET designs [7-9], the floating-gate now spans the entire device. This allows us to 

significantly scale the total device area without compromising the amount of biochemical 

charge being sensed.   

1.1.1 Ion Selective FET 

  The first pioneering work on biosensors based on Ion-selective field effective 

transistor (ISFET) was reported in 1972 [10]. The ISFET is primarily a MOS field-effective 

transistor with a gate used as a reference electrode. This gate electrode is exposed in an 

aqueous solution, as illustrated in Figure 1.1. The voltage induced on the gate electrode is 

modified by the nature (pH, ionic concentration) of the solution. This gate voltage is 

monitored by measuring the current flowing between the ISFET‘s drain and source terminal. 

  During the past three decades, considerable work has been reported on improving the 

ISFET sensitivity, noise cancellation techniques, and sensor integration on-chip. 

Compatibility with standard CMOS fabrication process and the need for an additional 

reference electrode has been challenging issues for the scientific community. Additional 

post-processing steps such as coating with dielectrics are required to properly insulate the 

ISFET from the exposed chemical solutions. This limits the commercial worth of ISFET 

devices compared to other electronic devices such as microprocessors and flash memories.  
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Figure 1.1: Schematic views of a MOSFET (a) and ISFET (b). 

1.1.2 Chemoreceptive Neuron MOS 

A group of researchers at Cornell University reported a modified version of a CMOS 

transistor for biosensing, which they named extended floating gate transistor (EGFET) [11, 

12]. In this structure, the CMOS device has a floating gate that is capacitively coupled to the 

control gate on one side and sensing gate on the other side. Control gate induces voltage on 

the floating gate, turning on the transistor channel, while charges on the sensing gate 

modifies the floating gate voltage, and result in a shift in drain current. Change of floating 

gate voltage is directly related to the control gate voltage and the amount of charge on the 

sensing gate. However, as seen in Figure 1.2, this device requires a large area to isolate the 

extended control gate and sensing gate. This prevents device miniaturization and integration 

with VLSI components. Additionally, the device operation requires a large voltage (30V) for 

tunneling electrons into and out of the floating gate.  
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Figure 1.2:  Illustration of a CνMOS transistor. Three-dimensional rendering of the device 

structure with potential multiple sensing gates [11]. 

1.2 Proposed Umbrella-Shaped Field Effect Transistor (UGFET)  

 We present a new architecture for extended floating-gate FET where the floating-gate 

spans the entire device area. We call it an Umbrella-shaped Floating-Gate (UGFET). The 

device comprises a FET with a control-gate, a floating-gate and a sensing area. The proposed 

UGFET is a combination of neuron FET-based sensor, chemicapacitors and a novel floating-

gate structure. This allows us to significantly scale the total device area without 

compromising the amount of biochemical charge being sensed.  Compared to the previous 

EGFET design, this work drastically reduces the chip area (from 100 µm×100 µm to 14.4 

µm×28.4 µm). A scheme for parallel readout of multiple devices in an array is shown. The 

chip is biocompatible and allows growth of neuronal cultures without detrimental effects on 

the bio-FETs. This would enable possible real-time, non-invasive observation of biologically 

relevant growth and adaptability processes of cells with applications to several 

neurodegenerative diseases.  
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1.3 UGFET Design and Analysis 

 As shown in Figure 1.3, the device comprises a floating-gate that is capacitively 

coupled to a control gate (CG) and connected to a sensing area (SA). The floating-gate 

covers the entire device to maximize the sensing area and minimize the lateral dimensions. 

The biochemical solution is placed on the sensing area that is covered with overlay glass 

deposited during the last step of CMOS fabrication. The floating gate is capacitively coupled 

to this sensing area to electronically read out any charge fluctuations on the sensing area.  

 

Figure 1.3: (a) Cross-section of the proposed UGFET and its symbolic representation with 

an equivalent capacitance model (b). 

The induced voltage VFG on the floating-gate of bio-FET shown in Figure 1.3 is 

written as: 

                 
   

  
    

      

  
 

   

           
    

      

           
    Equation (1.1) 

where CCF represents capacitance between control-gate and floating-gate, CSF is the 

capacitance between sensing area and floating-gate, CBF is the capacitance between floating-

gate and the bulk, CT is the total capacitance of the device [5], VCG is the applied voltage on 

Drain Source

FETBulk Silicon

Control Gate (CG)
Sensing Area (SA)

Floating
Gate (FG) 

(a)

(b)

CBF

CSF

CCF

CG SA

FG

FET

spacer metal poly 2 poly 1
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the control-gate, QF0 is the static charge on floating-gate and Qi is the total induced charge on 

sensing area. In our experiments, QF0 is taken as the ‗reference‘ charge on the floating-gate 

with deionized (DI) water on the sensing area. Addition of charged biomolecules alters the 

voltage on the floating-gate [7-9]. Positively charged molecules increase VFG and thus a 

smaller VCG is required to turn on the device. This produces a lower threshold voltage (VT) 

and a negative shift in the current-voltage (I-V) curve compared to that for DI water. 

Alternatively, negatively charged molecules lower the floating-gate voltage VFG and require a 

higher control-gate voltage VCG to turn on the device.  

  We designed the UGFET sensor using SCMOS rule in Cadence and fabricated by 

AMIS 1.6 µm technology. The sensing gate is 14.4 µm×28.4 µm. Since the floating-gate is 

totally isolated, its total charge remains a constant. This charge conservation principle was 

used earlier to arrive at Equation (1). The UGFET‘s effective threshold voltage depends on 

the amount and nature of surface charges over the sensing area. Positive surface charges QS 

cause a negative shift in the effective threshold voltage, while negative surface charges QS 

give a positive shift in the threshold voltage (for n-channel UGFETs and vice versa for p-

channel UGFETs).  

  Using the initial 1-D modeling, a 3-D UGFET device model is constructed using 

Synopsys® Sentaurus Structure Editor. This helps create a realistic device structure 

according to the AMIS technology profile used later for device fabrication. The design is 

built using Scalable CMOS (SCMOS) design rules available through Cadence. The 

semiconductor parameters such as doping density, the oxide thickness, the metal thickness et 

al are extracted from the test data available on MOSIS website (www.mosis.com) for AMI 

http://www.mosis.com/
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1.5 m technology. By the simulation, we are able to visualize the charge redistribution and 

potential profile due to the charge fluctuations over the sensing area. A snapshot of the 

UGFET structure is shown in Figure 1.4.  Figure 1.5 shows a snapshot of the three 

dimensional electrical potential distribution of the UGFET. The developed 3-D device model 

takes into account all parasitics such as fringe capacitance and overlap capacitance. The 3-D 

capacitance values appear to be approximately 9-12% deviated from those obtained using a 

1-D model. As expected, compared to a 1-D model, the 3-D model gives a better 

representation of the device physics and electric field profiles as the device structure is scaled 

down.   

 

Figure 1.4: Three-dimensional UGFET cross-section built with the Synopsis device 

simulator. 

      

Figure 1.5: Three-dimensional electrical potential distribution of UGFET using Sentaurus 

TCAD simulation tools 
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  Extensive simulation studies were performed to scale the device dimensions without 

sacrificing the sensitivity. Two important results are shown here. In Figure 1.6, the control-

gate voltage is varied from 0V to 10V. Two cases are plotted where the charge densities are 

4×10
10

 electrons/cm
2
 and 8×10

10
 electrons/cm

2
. The spacer is 200 nm thick and separates the 

floating gate from external charges. A linear relationship is shown between the floating gate 

voltage and control gate voltage as derived in Equation (1.1). 

  Figure 1.7 shows the dependence of floating-gate voltage on the charge density 

placed on the sensing area. The spacer thickness is chosen as 30 nm. Three cases are plotted 

for three different control-gate voltages: 2V, 4V and 6V. We observe a linear relationship 

between the floating-gate voltage and charge density to be sensed. This again follows from 

Equation (1.1). The floating-gate voltage also depends on spacer thickness. A thicker spacer 

induces less potential on floating-gate but this dependence is negligible.   

  During an experiment, the amount of charge (e.g. from single stranded DNA) 

immobilized on the sensing area can be easily modified and this, in turn, modulates the 

UGFET‘s threshold voltage [5]. The shift in threshold voltage is usually determined by 

measuring the drain current at a constant control-gate voltage or by measuring the control-

gate voltage at a constant drain current. The electronics instrumentation can also be 

programmed to repeat the device measurements over a period of time. This would help detect 

and monitor any subtle charge fluctuations due to some chemical reactions over the sensing 

area (e.g. DNA hybridization, antigen-antibody interactions, cell migration, stem-cell 

differentiation, synaptic transmission, or inter-neuron communication) [8].    
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Figure 1.6: Floating-gate voltage is linearly dependent on the control-gate voltage for the 

UGFET device as observed from the device simulations. The two plots are from two values 

of charge densities on the sensing area.  

 

Figure 1.7: Simulation results show the floating-gate voltage is linearly dependent on the 

charge density over the sensing area of UGFET device. The three plots are related to three 

values of the control-gate voltage.   

1.4 UGFET Fabrication 

  We designed the sensor using SCMOS rule in Cadence Virtuoso. UGFET devices are 

fabricated through a commercial foundry (MOSIS AMIS 1.6 µm technology). This process 

technology has a feature size of 1.6 µm, which means the minimum gate length of the 

MOSFET is 1.6 µm. This technology has two poly-silicon layers (poly 1 and poly 2) and two 



www.manaraa.com

10 
 

  
 

metal layers (aluminum) for electrical interconnects. The capacitance between poly1 and 

poly2 layer is large and is used to create the capacitive coupling between the control gate the 

floating gate. Devices (CMFETs and UGFETs) with various dimensions (14.4 µm×28.4 µm 

to 100 µm×100 µm) are included in one single chip and packaged in DIP40. Figure 1.8 

shows the packaged chip along with a snapshot of the devices on the chip [13]. 

The transistor designs are relatively scaled based on the device width/length ratio of 4.5 m 

/1.5 m. The gate oxide thickness is 30 nm and the devices are fabricated in p type silicon 

substrate. The threshold voltage average for regular NMOS transistors is 0.56V in this run. 

No post fabrication process is performed for the devices. 

  

Figure 1.8: Fabricated chip packaged in DIP 40 pin (a) with CMFET and UGFET devices 

and a snapshot (b) of an array of UGFET devices. 

1.5 Experimental Results 

  The performance for any sensors is characterized by testing its sensitivity, stability, 

and reproducibility. Our UGFET devices, as shown in Figure 1.8, are tested for these three 

benchmarks. Their performance is reported here. A high degree of consistency and 

reproducibility in the measured data are found during device testing. The semiconductor 
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parameter analyzer HP4155 is employed and custom LabVIEW
TM

 programs are written for 

automated data-acquisition and controls of the various electronic instruments (HP4155, probe 

station and computer). In addition, an 8 x 8 array of the smallest devices (14.4 µm×28.4 µm) 

are fabricated. Similar to flash memory cells [6], bit and word lines are included for parallel 

readout of multiple devices in the array, as shown in Figure 1.9. 

 

Figure 1.9: Snapshot of the fabricated chip showing single and an array of UGFET devices 

with bit and word lines for easy readout. Cell lines placed on the chip adhered and are 

growing into neurons (translucent globules). 

1.5.1 Electrical Characterization   

  The fabricated UGFET devices are tested under dry conditions and drain to source 

current measurements are performed, as shown in Figure 1.10.  Judging from the 

characteristics of the plots in Figure 1.10, we confirm that the fabricated UGFET devices 

work well as extended floating-gate field-effect transistors. The voltage applied to the 

control-gate is able to induce a potential change on the floating-gate and turn the device ‗on‘ 

single bio-FETs

8 8 array

bit lines

word lines

50 µm

adhered cells



www.manaraa.com

12 
 

  
 

[6]. The sensitivity of the floating-gate potential on the control-gate voltage follows from the 

simulation results shown earlier in Figure 1.6 [13]. 

 

Figure 1.10: UGFET I-V measurements under dry conditions: with varying drain voltages  

 

Figure 1.11: UGFET Ids-Vc (control gate voltage) measurements under dry conditions: 

drain current with varying control-gate voltages  

 1.5.2 Transconductance Measurement 

   The UGFET device is tested for its charge-sensing ability with a small volume of the 

following charged poly amino acid: 0.01% poly histidine, 0.5% poly glutamic acid, and 0.5% 

poly asparatic acid, as shown in Figure 1.12.  The control gate voltage is swept from 0V to 
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4V while keeping the drain voltage fixed at 0.4V. The drain currents are recorded.  The 

transconductance curves are shown in Figure 1.12 [14]. As observed from Figure 1.12, 

positively charged poly histidine produces a negative threshold voltage shift (~0.1V), while 

negatively charged poly glutamic acid and poly asparatic acid produce a positive shift of 

~1.2V and ~0.35V respectively. The relative shifts in the threshold voltage can be explained 

as follows: poly histidine, similar to poly-L-lysine, is a positively charged amino acid 

solution and its polycationic nature is known to attract the anionic groups of a biological 

sample and promote adhesion. Since surface charges QS on the sensing area are positive, 

threshold voltage is reduced due to a larger floating-gate voltage under the same control-gate 

voltage. The drain current curve is hence shifted left of the DI water reference curve. The 

smaller shift for poly histidine is attributed to its very low concentration. Negatively charged 

poly aspartic acid and poly glutamic acid shift the gmVCG curves to right of DI water 

reference. The higher concentrations of other poly amino acids translate to larger threshold 

voltage shifts, as shown in Figure 1.12. All measurements are repeated several times and the 

data are consistent. The chip is reusable and rinsing with DI water is sufficient to restore the 

reference I-V curve.  
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Figure 1.12: UGFET I-V and transconductance curves tested with DI water, 0.01% poly 

Histidine, 0.5% poly aspartic acid and 0.5% poly glutamic acid solutions. 

 The threshold voltages are extracted from Figure 1.12 using the transconductance 

method [7]. For the case of DI water reference, the threshold voltage is 1.5V. A differential 

threshold voltage (VT = VT_poly - VT_DI) is calculated for each poly amino acid. For positively 

charged poly-L-histidine and poly-L-lysine, the VT values are -0.1V and -0.08V 

respectively. The VT values for negatively charged poly aspartic acid and poly glutamic 

acid are 0.35V and 1.2V respectively. Both poly-L-histidine and poly-L-lysine have a much 

lower (0.01% w/v) concentration which explains their smaller VT magnitude. Poly aspartic 

acid and poly glutamic acid are at a higher (0.5% w/v) concentration and hence produce a 

larger VT magnitude. Each I-V measurement is done 5-8 times and repeated (5-8 times) 

after refreshing the device using the above mentioned steps (Section II). The VT values are 

consistent which indicate reliability in detecting biochemical charges using the bio-FETs. 

0.0E+0

5.0E-6

1.0E-5

1.5E-5

2.0E-5

2.5E-5

3.0E-5

3.5E-5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

T
ra

n
sc

o
n

d
u

ct
an

ce
 g

m
 (

A
/V

)

Control Gate Voltage (V)

DI water

poly glutamic acid

poly aspartic acid

poly-L-histidine

poly-L-lysine



www.manaraa.com

15 
 

  
 

1.5.3 Subthreshold Measurement 

   We also measure the subthreshold characteristics of the devices [15]. In subthreshold 

region, the I-V curve follows an exponential relationship, as given in Equation (1.2).    and   

in the Equation (1.2) are constants related to the size and doping of the device. 

               
       

   
              Equation (1.2) 

  The control-gate voltage is fixed at 2.5V and the drain voltage is swept from 0V to 

2V. The subthreshold I-V curves are recorded for different concentrations of PAA solution, 

as shown in Figure 1.13. The devices are refreshed after each run of 5-8 trials and reused. 

The subthreshold I-V curves show a consistent shift to the left with increasing PAA 

concentration [16]. A higher concentration of PAA molecules increases the surface potential 

and lowers the threshold voltage VT. The subthreshold slope S is unaltered, indicating that the 

charge distribution is undisturbed during individual experiments [7]. These results are also 

expected from our simulations.  

 

Figure 1.13: Subthreshold I-V curves tested for different concentrations of poly acrylic acid 

(PAA). 
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  To show concentration-dependent change in the threshold voltage, three other poly 

amino acids (PSASS, PAHC and PDDAC) are tested as shown in Figure 1.14). The 

differential threshold voltage increases with increasing concentration of the charged poly 

amino acids.  

 

Figure 1.14: Differential threshold voltages (difference in a device‘s threshold voltage with 

poly amino acid and with DI water) values versus percentage concentration of four poly 

amino acids (PAA, PDDAC, PSASS and PAHC).  

  To demonstrate feasibility of the UGFETs for VLSI integration, we fabricated an 8×8 

array of the smallest (14.4 µm×28.4 µm) devices. The control-gates of a single row are 

connected to form a bit line while drain electrodes of a single column are connected to form a 

word line. Each of the eight bit and word lines are addressable by an external analog-digital 

converter and a LabVIEW
TM

 program. I-V characteristics of individual bio-FETs in the array 

are similar to those isolated devices, as shown in Figure 1.10 and Figure 1.11. Fabrication in 

another technology node (possibly 0.18 m or 40 nm) will enable further scaling of the array. 
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One possible application of a high density array of bio-FETs is the real-time monitoring of 

neuronal growth and cell-cell communication. To demonstrate on-chip cell growth and 

viability, neuronal cell lines (suspended in standard cell culture media) are dropped on the 

fabricated chip which then adhere to the chip surface and grow over time. The snapshot in 

Figure 1.9 shows successful adherence and growth of neurons on the chip surface three days 

after placing the cell lines. I-V characteristics of the devices are stable through the three days 

of neuronal growth. This suggests good physical and chemical isolation of the floating gate 

and minimal penetration of ions in the culture media through the overlay glass. 

1.6 Discussion 

  The basic operation principle of UGFETs is similar to signal conduction mechanisms 

in neurons and synaptic clefts. The UGFET can be viewed as having multiple control-gate 

electrodes, each capacitively coupled to the extended floating-gate. The voltage induced on 

the floating gate is a weighted sum of the voltages applied to the control-gate electrodes. In 

our case, there are two ‗controls‘ contributing to the floating-gate potential: the control 

electrode and the biomolecular charges over the sensing area. 

  Since UGFET charge-sensing mechanisms discussed here are purely capacitive, the 

control-gate voltage can be scaled down and easily integrated with other on-chip VLSI 

components. This is particularly useful in designing autonomous systems for biochemical 

sensing which require the on-chip integration of sensors, control circuitry, memory devices, 

and power lines. This was a disadvantage for previous CMFET and neuromorphic FET 

sensors that rely on tunneling-based mechanisms and therefore need higher operating 

voltages [6]. No special post-processing (e.g. glass cut [5] or nitride passivation [6]) is 
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required for our UGFET devices. Furthermore, the UGFET has a reduced device area which 

leads to better charge sensitivity and possible large-array applications.    

 In summary, our work has presented a novel charge-sensing platform using an 

extended floating-gate device (UGFET) that is scalable and fully compatible with standard 

CMOS process. Simulation results predict a very high sensitivity compared of previous 

neuron FETs: 150 pico Coulombs of charge per mm
2
 on the sensing area produces ~1V 

change in the floating-gate. The fabricated sensor arrays are tested as charge-modulated 

biochemical sensors. This neuromorphic sensing method is nondestructive, repeatable, 

reusable, and easily refreshed. The transconductance and subthreshold measurements verified 

that the UGFETs show markedly different responses between polyelectrolyte and poly amino 

acids of varying polarity and concentration. Since most biological species (single cells, 

proteins, DNA) have intrinsic charge, UGFET charge-modulated microarrays could serve as 

fast, portable, and inexpensive alternatives for biochemical sensing applications.  

Additionally, the chip is biocompatible and allows growth of neuronal cultures without 

detrimental effects on the UGFETs. This would enable possible real-time, non-invasive 

observation of biologically relevant growth and adaptability processes of cells with 

applications to several neurodegenerative diseases. 
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Chapter 2 

MEMS Bioassay for Characterizing Nematode Phenotype 

2.1 Introduction 

  Nematode parasites cause disease in plants, animals and humans causing economic 

loss to agricultural and food industry. The control of plant parasitic nematodes has involved 

crop rotation, biological control and use of chemicals.  In animals and humans, where there is 

an absence of vaccines, and sanitation is poor, control of these infections has relied on 

regular chemotherapy.  Drug resistance has emerged in parasites of animals [17] and humans 

[18]. Early detection of drug resistance is necessary for limiting its spread.  Although some 

molecular methods are available for detecting a changed genotype associated with resistance 

[19, 20] detection of resistance in nematode parasites is mainly based on detecting a changed 

phenotype.  Many classes of anthelmintics (haloxon, levamisole, monepantel, derquantel, 

ivermectin and piperazine) act on the neuromuscular system of nematodes to inhibit 

locomotion [21, 22]. It is likely that drug resistance will be associated with a change in the 

phenotype of locomotion as signaling pathways are modified.  Figure 2.1 shows several 

examples of nematodes along with crops infected by nematodes. 
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Figure 2.1: Examples of different nematode species: Hoplolaimus galeatus (a), Aphelenchus 

avenae (b), and Meloidogyne incognit (c). Various species of nematodes infect different 

crops-- (d) corn roots damaged by Paratrichodorus minor, (e) Peanut pods damaged by 

Pratylenchus brachyurus, and (f) resistant and susceptible soybean growing in a Heterodera 

glycines infested field are shown. (Pictures from http://www.nematologist.com) 

  Here, we describe a method for characterizing the movement phenotype of larvae of 

parasitic nematodes by quantitative measurement of their locomotion in microfluidic 

chambers. We show that phenotype varies with the species and strain of the tested nematodes.   

We show that the dose response measurement of the forward velocity is detectably different 

between resistant and sensitive strains of an animal parasitic nematode.  

  Most nematodes rely on side-to-side slithering movement to ‗swim‘ over solid 

surfaces. Their mechanism of locomotion has intrigued researchers for several decades and 

inspired a number of quantitative models to explain the nature of undulatory motion [23, 24, 

25, 26]. In the model nematode, C. elegans, locomotion experiments have often been 

performed on agar plates where the C. elegans uses the surface tension of thin surface water 
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film and its internal hydrostatic pressure to generate the forward motion force [27-29]. The 

oscillatory movement of the head is propagated backwards along the rest of the body as 

sinusoidal waves [25, 30]. Recently, microfluidics technology has enabled the fabrication of 

a new class of devices such as micro-chambers, mazes, wave sampler and cylindrical posts to 

study worm behavior in structured and challenging microenvironments [25, 31-34]. Amongst 

other benefits, microfluidics technology offers experimental resolution at the micro scale 

level, thereby allowing the experimentalist to observe, track, and characterize locomotion of 

a single worm over time [34]. On-chip immobilization of nematodes on microfluidic devices 

with high-resolution imaging of its neurons and other cellular activity has also generated 

great interest in the neuroscience community [31, 35-37]. 

  In this work, we extend the application of microfluidics technology to the study of 

parasitic nematodes and demonstrate differences between species of nematode. More 

importantly, the approach can distinguish different isolates of the same species. We designed 

and fabricated microfluidic assays to record and characterize the undulatory movement of 

larvae of the pig parasite Oesophagostomum dentatum and the soybean cyst nematode (SCN), 

Heterogena glycines, Two isolates of the O. dentatum species were tested: levamisole-

sensitive (SENS), which are sensitive to the cholinergic anthelmintic levamisole and 

levamisole-resistant (LEVR), which are resistant to the drug at therapeutic doses. The 

parameters under study were the velocity of forward migration, amplitude and wavelength of 

the sinusoidal motion, and the frequency of side-to-side slithering action of the nematodes. 

We observed clear differences between SENS and LEVR O. dentatum larvae allowing the 

drug resistant phenotype to be identified in the absence of the anthelmintic drugs. We 
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characterized the anthelmintic dose response for SENS and LEVR isolates and noticed 

differences in the degree of their drug resistance. We also observed distinct differences in 

locomotion parameters between larvae of H. glycines and O. dentatum.  

2.2 Device Design and Analysis 

2.2.1 Fabrication of Microfluidic Devices 

 The microfluidic devices were designed to have multiple straight, parallel channels 

(width = 300 µm, length = 1 cm, height = 40 µm), each with its individual input and output 

ports. The device dimensions can be easily altered at the design stage to be adapted to a 

certain species of nematodes under test. The fabrication was done using standard 

micromachining and soft lithography procedures [33]. The mask layout was drawn in Adobe 

Illustrator and sent to an outside vendor (Photoplotstore, Colorado Springs, CO) to generate 

the masks. A 40 µm-thick SU-8 photoresist (Microchem Corporation, Newton, MA) was cast 

on a bare silicon wafer by spin coating (~1000 r.p.m.). Standard photolithography was 

carried out to create the final SU-8 master mold. The PDMS prepolymer (Sylgard-184 

Silicone Elastomer Kit, Dow Corning Corporation, Midland, MI) was cast over the SU-8 

mold and cured on a hot plate at 70C for two hours. Subsequently, the PDMS microfluidic 

devices were peeled off the mold and input/output ports (2mm diameter) were created using a 

sharp needle. Air plasma was exposed to the PDMS devices, which are then bonded to 

individual glass cover slips. The mask is shown in Figure 2.2 (a). The pictures of two species 

of nematodes used in our experiments are shown in Figure 2.2 (b), which is O. dentatum (left) 

and H. glycines (right).  Figure 2.3 shows a block diagram of the soft lithography steps 

discussed above. 
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Figure 2.2: Microfluidic chamber and larvae. (a): the mask for the four-channel microfluidic 

device to study nematode locomotion. There are vertical markers to help calibrate the 

forward velocity. (b): pictures of the organisms used in our experiments: O. dentatum (left) 

and H. glycines (right).  

  

 

Figure 2.3: The soft lithography steps used in the microfluidic channel fabrication. 

2.2.2 Sample and Medium Preparation 

  A 0.8 % agar (Fisher Scientific) gel in water was prepared. The mixture was put on a 

hot plate at 100C and stirred for one hour. The molten agar was allowed to cool down to 
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37C in a warm water bath. 0.36 µL of agar was pipetted and filled in each of the four 

channels of the microfluidic device. Care was taken to ensure that input ports of the channels 

are not completely filled with agar or else, after a brief time (2 minutes), the excess gel-like 

agar was scooped and cleared out of the input ports. A small volume (1mL) of nematodes 

were pipetted and centrifuged to increase the concentration of the worms (100/μL). The 

nematodes were then added to the agar and allowed to accommodate at 37C for 10 minutes. 

Syringes were connected to the input ports of the microfluidic devices using rubber tubing. 

Subsequently, the agar gel mixed with nematodes was filled into the input ports of the four 

channels. After 5 to 15 minutes (the scouting time), the nematodes were seen entering the 

channels from the input ports and moving through the channel towards the output ports.     

2.2.3 O. dentatum Larvae as Test Nematodes 

  Oesophagostomum dentatum were originally supplied by the Royal Veterinary and 

Agricultural School, Frederiksberg, Copenhagen and then reproduced at 6-9 month intervals 

by passage in pigs at Iowa State University, Ames, Iowa. The L3 larvae isolates were 

maintained between passages in tap water refrigerated at 11˚C (changed every 2-4 months).   

2.2.4 Data Capture and Analysis 

  The nematodes were observed with a Leica MZ16 transmission stereomicroscope 

using magnifications from 7.1x to 230x.  A QICAM 12-bit Mono Fast 1394 Cooled digital 

camera interfaces with a QCapture Pro software for capturing individual digital images and 

digital image sequences. Digital image sequences of nematode movement were recorded at 

one-second time intervals with a resolution of 1392 x 1040 pixels and saved in 

uncompressed .avi video format.  These videos were later imported into MATLAB where 
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individual frames are analyzed.  An actual distance to pixel distance ratio was created by 

measuring the pixel width of a channel of known width using the MATLAB Image Toolbox.  

This ratio was used to translate pixel measurements to actual distance for the calculation of 

nematode velocity, amplitude and wavelength. The MATLAB Image Toolbox was used to 

measure pixel distance and was able to accommodate the angle and direction of nematode 

movement.  

2.2.5 Calculation of Locomotion Parameters 

  Nematodes with unimpeded forward propagation exhibit a consistent velocity over 

distances much longer than their body length.  Worm average velocity was defined as the 

continuous forward linear distance traveled by a worm‘s head with respect to time.  In our 

experiments, average velocity over a length of the channel was measured by obtaining the 

total number of pixels traveled by the head of a nematode between a certain number of image 

frames (minimum 20) taken at one-second time intervals.  The total number of pixels 

traversed between the beginning and the end frames was calculated using QCapture PRO 

software and translated to an actual distance using the previously mentioned ratio.  This 

distance was then divided by the total number of frames between the beginning and end 

measurement positions to obtain an average velocity in µm s
-1

.   

  Besides the average velocity, we measured parameters related to the sinusoidal body 

shape of nematodes during forward locomotion. As shown in Figure 2.4(a), the amplitude (A) 

was measured from latitudinal peak to peak, while wavelength (λ) was measured from 

longitudinal peak to peak, as shown in Figure 2.4.  The pixel distances of these attributes 

were measured using the MATLAB Image Toolbox. Pixel distance was converted to actual 
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distance in the units of micrometers using the previously mentioned ratio. The oscillation 

frequency was calculated as the reciprocal of the total time period needed for a given worm 

to return to its original state of sinusoidal pattern. A pictorial representation of the oscillation 

frequency is shown in Figure 2.4(b).  

 

Figure 2.4:  Measurement of locomotion parameters. (a): Illustrations of the SENS larvae for 

measurement of the velocity (V), amplitude (A), and wavelength (λ) from the recorded 

videos. Individual images are separately analyzed from a video and a MATLAB
®

 program is 

used to accurately measure the parameters with a resolution of 0.1m. (b): A fourth 

parameter, oscillation frequency, is calculated as the reciprocal of the total time period 

needed by a nematode to complete one sinusoidal wave motion. The figure shows a series of 

time-lapsed images of the same H. glycines as it moves along the agar-filled channel and the 

time period is 2 seconds (oscillation frequency = 0.5Hz).  

  These measurements of body parameters were only performed on worms that were 

normal to the viewing plane and clearly exhibit forward movement uninhibited by foreign 
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objects. We ignored image frame sequences where the worm under observation touched 

other worms, the sidewalls of the channel or any foreign particulates during its movement. 

This prevented distortion of their natural amplitudes and wavelengths and gave true 

information of their body parameters. Furthermore, care was taken to use a small and 

constant concentration of worms (~100/μL) in each channel so the chances of observing 

uninhibited forward movement of nematodes in the microfluidic device increase.  

  Unpaired t-tests were used to estimate statistical significance. Graph Pad V. 5.0 

(GraphPad
®
, San Diego, C.A.) was used to carry out these tests.  
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2.3 Experimental Results 

2.3.1 Amplitude Measurements 

  When we examined the amplitudes of the waves of contraction, we found differences 

between nematode isolates and species. Figure 2.5 shows examples of the amplitude 

observed with SENS and LEVR isolates of O. dentatum. Also shown are the distributions of 

SENS and LEVR amplitudes.   SENS had an amplitude of 135.2 ± 1.7 µm (mean, ± s. e., n = 

32) which was significantly (p < 0.001) larger than LEVR (122.5 ± 1.8 µm, mean, ± s. e., n = 

35).  

  When we measured amplitude of the SENS and LEVR isolates in the presence of 1 

µM levamisole, we found that there was a significant reduction in the amplitude of SENS 

(reduced to 121.3 ± 1.9 µm, n = 38, p < 0.001) but not in LEVR (124.8 ± 1.9 µm, n= 27, p = 

0.39, Figure 2.5).  1 µM levamisole reduced the amplitude of SENS by 10.3% but the LEVR 

amplitude did not decrease.  

  When we examined H. glycines to test for species variation, we found that it had a 

much smaller amplitude contraction wave than the O. dentatum larvae.  H. glycines had a 

mean amplitude of 89.6 ± 1.8 µm (mean, ± s. e., n = 150) which was significantly smaller 

than the SENS and LEVR isolates (p < 0.001). 
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Figure 2.5: (a) Statistical distribution of the measured amplitude for SENS and LEVR O. 

dentatum larvae is shown. The difference in amplitude is also visible in the two snapshots of 

the O. dentatum larvae. (b) The measured amplitude are depicted for SENS and LEVR larvae 

without any drug exposure, SENS and LEVR larvae exposed to 1M levamisole, and H. 

glycines nematodes. 

2.3.2 Wavelength Measurements 

  SENS had a mean wavelength of 372.9 µm ± 7.1 µm (mean, ± s. e., n = 32) and 

LEVR had a mean wavelength of 393.1 ± 4.6 µm (mean, ± s. e., n = 35) which was 
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significantly different (p = 0.019), as shown in Figure 2.6. 1 µM levamisole did not have a 

statistically significant effect on the wavelengths of either of the isolates.     

  The mean wavelengths of H. glycines was 310.2 ± 3.3 µm (mean, ± s. e., n = 150), as 

shown in Figure 2.6. The wavelength of the SENS isolate is significantly larger than the 

wavelength of H. glycines (p < 0.001).  The smaller wavelength for H. glycines is consistent 

with the smaller size of the plant parasite compared to the slightly longer length of the O. 

dentatum larvae. 

 

 

 

Figure 2.6: The measured wavelength is shown for SENS and LEVR O. dentatum larvae 

without any drug exposure, SENS and LEVR O. dentatum larvae exposed to 1M levamisole, 

and H. glycines SCN nematodes. There is no significant difference in wavelength between 

SENS and LEVR larvae with or without exposure to levamisole. The SCN nematodes are 

physically smaller than O. dentatum larvae and thus demonstrate a shorter wavelength. 

S
EN

S

S
EN

S
 1

µM
 L

ev

   
   

   
  

Lev
R

Lev
R
 1

µM
 L

ev

   
   

   
  

S
C
N

0

100

200

300

400

500


 (

µ
m

)



www.manaraa.com

31 
 

  
 

2.3.3 Tangential Force for Forward Movement 

  An interesting aspect of the nature of nematode locomotion involves the role of both 

amplitude and wavelength, which had initially motivated us to measure these body 

parameters. In 1953, Gray [23] has reported a detailed theoretical analysis of undulatory 

motion. He derives the maximum forward tangential force, FT, exerted by a half-wave of the 

nematode body and relates to its body parameters. This normalized force FT / Wo is 

expressed as [23, 25]:  

  

  
 

     

            
          Equation (2.1) 

This force is directly related to A/ λ. The normalization coefficient Wo in Equation (2.1) 

depends on parameters such as surface tension, frictional force, and coupling moment which 

are assumed unchanged in our experiments [23]. To clarify, the coefficient    has the unit of 

   . As shown in Figure 2.7, the body of a nematode can be viewed as different segments 

where each individual segment applies a tangential force FT for the forward propulsive 

motion. The above equation also implies that this tangential force increases with increase in 

amplitude and decrease in wavelength [23]. The data gathered for our amplitude and 

wavelength analysis were used to obtain a set of A/λ quotients.   
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Figure 2.7: (a) The tangential force FT exerted by each segment of the nematode‘s body 

results in the characteristic sinusoidal movement. (b) The amplitude to wavelength ratio is 

plotted for SENS and LEVR larvae without any drug exposure, SENS and LEVR larvae 

exposed to 1M levamisole, and H. glycines SCN nematodes. The SENS larvae has a higher 

amplitude to wavelength ratio than that for LEVR larvae which is significantly decreased 

during exposure to levamisole. This ratio is relatively unchanged for LEVR larvae after 

exposure to levamisole. The SCN nematodes have a lower amplitude to wavelength ratio 

compared to O. dentatum larvae.    

  The mean ± s.e. A/λ quotient values of experiments on O. dentatum larvae and H. 

glycines are shown in Figure 2.7(b). The mean of A/λ quotients for the SENS isolate was 

0.366 ± 0.007 (mean ± s. e., n = 32), while that for the LEVR isolate was 0.313 ± 0.005 

(mean ± s. e., n = 35) which is significantly smaller (p < 0.0001, unpaired t-test). After 

exposure to 1 µM levamisole, the mean A/λ quotient of SENS isolate showed a 13% decrease 

to 0.317 ± 0.005 (mean ± s. e., n = 38) whereas the LEVR isolate showed a 4.6% increase to 
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0.327 ± 0.006 (mean ± s. e., n = 27). The decrease in A/λ quotient for the SENS isolate was 

significant (p < 0.001) while there was no statistically significant difference in the A/λ 

quotient for the LEVR isolate with 1 µM drug exposure (p > 0.05).   

  Following Equation (2.1), the mean of the normalized tangential force for the SENS 

isolate was 2.49 ± 0.05 x 10
-3

 (mean ± s. e., n = 32) while that for the LEVR isolate was 

significantly smaller (p < 0.001), 2.27 ± 0.03 x 10
-3

 (mean ± s. e., n = 35). After exposure to 

1 µM levamisole, the mean normalized force of the SENS isolate showed a 6.0% decrease to 

2.34 ± 0.04 x 10
-3

 (mean ± s. e., n = 38, p < 0.02) whereas the LEVR isolate showed no 

significant change and was 2.36 ± 0.04 x 10
-3

 (mean ± s. e. , n = 27, p > 0.05). The 

percentage changes in the mean normalized force among the O. dentatum isolates follow a 

similar trend as reflected previously by percentage changes in their A/λ quotient values. This 

reiterates that the tangential force needed for the forward movement is directly proportional 

to the A/λ quotient and is an important locomotion parameter for segregating nematodes of 

different isolates and their response to drugs. 

  Examination of the A/λ and tangential force results among the O. dentatum isolates 

leadsto interesting implications. A significantly lower A/λ quotient for the LEVR isolate 

compared to the SENS isolate indicates less forward locomotive force, and suggests that the 

resistance to levamisole in LEVR has lowered its vigor. We estimated FT using Equation 2.1 

to check and confirmed that it was significantly reduced in LEVR. In the presence of 

levamisole, the A/λ quotient of the SENS isolate was significantly decreased but the quotient 

of the LEVR isolate was not. The observation indicates that the SENS isolate, following 

levamisole treatment, has less propulsive force but LEVR is not significantly affected. This 
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result is consistent with the larval migration studies [20] where SENS is inhibited more than 

LEVR by levamisole. We expect that the tangential force exerted by the different segments 

of the nematode body is proportional to the amount of muscle contraction actively generating 

forward movement. Since the cholinergic anthelmintic levamisole affects body muscle 

contraction, it is not surprising that we have observed distinct differences in the locomotory 

parameters of SENS and LEVR O. dentatum larvae when exposed to levamisole.  

  We also examined A/λ quotient for H. glycines.  The A/λ quotient of H. glycines was 

0.289 ± 0.008 (mean ± s. e., n = 150).  An unpaired t-test (p < 0.001) between the A/λ 

quotients of the SENS isolate and H. glycines revealed a significant difference. The mean of 

the normalized tangential force for H. glycines was 2.84 ± 0.03 x 10
-3

 (mean ± s. e., n = 150) 

which was 13.7% greater than that for the SENS isolate. A larger normalized force for H. 

glycines compared to SENS isolate is due to their much shorter wavelength. This also 

indicates that while comparing two nematode species with significantly different 

wavelengths (e.g. O. dentatum larvae and H. glycines), the normalized tangential force is 

closely related to their individual wavelengths besides their A/λ quotients. Whereas, isolates 

within the same species (e.g. SENS and LEVR O. dentatum larvae) may usually have 

statistically insignificant differences in wavelength and thus the normalized tangential force 

will be closely related only to the A/λ quotients.  

2.3.4 Velocity Measurements 

  We compared the forward velocities of the O. dentatum larvae with increasing 

concentration of levamisole, as shown in Figure 2.8.  In the absence of levamisole, the SENS 

isolate had a velocity of 149.25 ± 6 µm s
-1

 (mean ± s. e., n = 31). LEVR had a velocity of 143 
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± 4 µm s
-1

 (mean ± s. e., n = 37).  The velocities of both SENS and LEVR larvae were each 

measured on the same three days. There was no statistically significant difference between 

the velocities of SENS and LEVR isolates in the absence of levamisole. 

  H. glycines had a velocity of 28.1 ± 2.0 µm/s (mean ± s. e., n = 20) which was 

significantly smaller than the isolates of O. dentatum larvae and H. glycines (p < 0.0001, 

unpaired t-tests). The much slower speed of H. glycines was expected because plant 

nematodes do not need to move rapidly searching for their plant hosts in contrast to the 

animal parasites.  

  Next, we tested the effect of different concentrations of levamisole on the SENS and 

LEVR O. dentatum larvae.  We measured the forward velocity of SENS and LEVR isolates 

when exposed to levamisole. The velocities at various drug concentrations are plotted in 

Figure 2.8.  There was little decrease in velocity for either SENS or LEVR isolates at a 

levamisole concentration below 0.5 µM. However, the SENS velocity drops clearly reduces 

with 1 µM while a similar reduction in velocity for LEVR requires a levamisole 

concentration of 3 µM.  The EC50 for SENS isolate was 3 µM and the EC50 for LEVR 

isolate was 10 µM as shown in Figure 2.8. Thus, we obtained a resistance ratio of three 

between the two isolates as measured from the forward velocities on the microfluidic device. 

From previous migration studies [20], the SENS EC50 was 26 µM and the LEVR EC50 was 

114 µM. This indicates that the microfluidic device has roughly a ten-fold better sensitivity 

compared to the migration assay [22] but the resistance ratio between SENS and LEVR is 

similar in both cases. 
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Figure 2.8: Velocity measurements. The measured forward velocity for SENS (dashed) and 

LEVR (solid) O. dentatum are plotted with increasing concentration of the drug levamisole. 

After a drug concentration higher than 1 µM, the velocity of SENS isolate decreases 

significantly whereas the velocity of LEVR isolate decreases significantly at a drug 

concentration higher than 3µM. The EC50 for SENS isolate is 3 µM while the EC50 for 

LEVR isolate is 9 µM. The plant parasitic H. glycines is much slower in its forward 

movement compared to the animal parasitic O. dentatum larvae (not shown in the figure).  

2.3.5 Frequency Measurements 

  Frequency analysis was carried out to further test measurements of velocity and 

wavelength. As an additional and separate test, velocity data and wavelength data were 

collected independently from different videos. The predicted frequency for all nematode sets 

was estimated by dividing the mean velocity by mean wavelength. The observed frequency 

was determined by observing image frames, measuring the actual time taken by the nematode 

larvae to return to its original state (i.e. measure the time period), and then taking the inverse 

of this time period.  We found that the predicted frequency values were close and not 
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EC50 SENS
EC50 LEVR

O. dendatum SENS (old)
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significantly different to the observed frequency values.  Interestingly, these observations 

were consistent with a classical equation of physics (velocity = wavelength × frequency) and 

this equation was found to be valid when describing the undulatory movement of nematodes, 

up to the limit of the resolution for our recording system.  

  The O. dentatum SENS larvae had an observed mean frequency of 0.35 ± 0.02 Hz 

(mean ± s. e., n = 75) which was not significantly different from the mean frequency of 

LEVR which was 0.38 ± 0.02 Hz (mean ± s. e., n = 75). However, 1 µM levamisole reduced 

the frequency of SENS by 23 % to 0.27 ± 0.02 Hz, n = 25 (p < 0.001) but produced little 

change in the LEVR isolate (0.35 ± 0.02 Hz, p > 0.1).  H. glycines had a mean frequency of 

0.127 ± 0.002 Hz, n = 75, which was significantly less (p < 0.001) than O. dentatum SENS.    

2.3.6 Worm Image Tracking Program 

The videos recorded during the experiments on drug dose response are analyzed with 

the an imagine tracking program. The output image file provided screenshots of the body 

dimensions and paths traversed as shown in Figure 2.9(a). Parameters such as wavelength, 

amplitude, forward velocity, and track signatures were extracted from the output file. As 

shown in Figure 2.9(b), a series of video processing steps were done on the input video file to 

minimize the background noise, improve the image resolution, and further process the 

relevant data.  

  An interesting aspect of the drug effect on the worm‘s movement is demonstrated in 

Figure 2.10. Here, two-dimensional paths traversed by representative SENS and LEVR 

worms at various levamisole concentrations are plotted as extracted from the worm tracking 

program. In the control experiments, body centroid of both SENS and LEVR isolates 
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followed a relatively straight path in the x direction with minimal deviation in the y direction. 

As the levamisole concentration reached 1 µM, the SENS isolate showed a greater deviation 

in the y direction compared to the LEVR isolate, while the track lengths were comparable for 

both of them. At 3 µM levamisole, the SENS appeared drugged with very frequent halts and 

turnarounds while the LEVR still showed resilience to the drug but with increased deviations 

in the y direction. At 10 µM levamisole, the SENS were completely paralyzed while the 

LEVR‘s movement had much more frequent halts and turnarounds compared to lower 

concentrations. The track signatures of nematodes plotted in Figure 2.10 provide a simple, 

graphical schematic of the steadily deteriorating effects of drugs on the worms‘ movement. 

This figure adequately complements the graph in Figure 2.9b which gives the actual values 

of a motility parameter (i.e. average forward velocity) as the nematode‘s sinusoidal 

movement deteriorates with drug exposure.     

 

Figure 2.9: Video processing and extraction of motility parameters using an image-tracking 

program. (a) The worm body is segmented into thirteen splines and the body centroid is 

tracked over the time duration of its forward movement. The program encloses the worm in a 

rectangular box and keeps record of the changing box dimensions as the worm moves in the 

microfluidic channel. (b) Sequence of steps in processing the raw videos involves 

background negation, channel segmentation, and worm recognition.  
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Figure 2.10: Individual worm tracks of O. dentatum nematodes obtained from the image-

tracking program. Without any drug exposure, the SENS and LEVR move in a relatively 

straight x-direction with insignificant movement in y-direction. With increasing levamisole 

concentration (e.g. 1 µM), their movement starts becoming zigzag with noticeable 

component in y-direction. At 3 µM levamisole, the SENS are almost paralyzed with erratic 

movement and frequent turnarounds while the LEVR is still able to exhibit its natural 

forward movement but with increased sloppiness. At 10 µM levamisole, the SENS are 

completely paralyzed and unable to enter the microfluidic channels while the LEVR are 

almost paralyzed with significantly erratic forward movement and frequent turnarounds.  
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2.4 Discussion 

  We presented a microfluidic device with parallel straight channels to observe and 

characterize nematode locomotion parameters. We demonstrated that these locomotion 

parameters are different for H. glycines (the soybean cyst nematode), and the SENS and 

LEVR isolates of O. dentatum. Furthermore, we demonstrated the use of the microfluidic 

device for observing drug effects on targeted nematode isolates with better sensitivity than 

migration assays. Our approach is attractive because it allows us to run multiple experiments 

(each in an individual channel) simultaneously and record the nematode movement from all 

the channels. The low cost of device mass production renders them disposable [38] although 

they can be re-used multiple times.   

  The locomotion studies described thus far can be conducted in channels filled with 

water or any suitable fluids. We preferred to use agar-filled channels for the following 

reasons: (a) Agar provides a better medium for the worms to push against as they crawl and 

propel themselves forward. In a fluid environment, the worms will swim and encounter slips 

as they move forward. As such, a solid agar medium would be closer to the natural soil 

habitat of these worms. (b) In microfluidic channels, it is difficult to maintain constant fluid 

pressure when both sides of the channel are exposed to air. In our initial experiments with 

water as a medium, the fluid pressure in the channel interfered with the natural movement of 

the nematodes. Such variation in fluid pressure is not a concern when using agar or other gel-

like material as a medium in the channels. 

  Besides illustrating the difference in movement phenotype between the drug-sensitive 

and drug-resistant isolates, we think the usefulness of the microfluidic device also lies in 
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drug testing. Currently, worm migration assays based on mesh structures are used to 

characterize the effect of a drug on nematodes [20]. The testing is a slow process taking a 

few hours, having thousands of nematodes for a single test, requiring higher concentrations 

of the drug, and with no scheme for parallelization. With the microfluidic devices presented 

here, the drug testing was done in parallel and each test was completed within 45-60 minutes. 

Compared to the binary migrated/inhibited or hatch/not hatch measurements used in larval 

migration or egg hatch assays, we are able to measure the nematode velocity, wavelength, 

and amplitude in the microfluidic device. Furthermore, the drug sensitivity is significantly 

improved. We have shown that the EC50 for the O. dentatum larvae on the microfluidic 

device is roughly 10 times smaller than that measured for O. dentatum larvae on the 

migration assays, as shown in Figure 2.8. However, with higher levamisole concentrations, 

the forward movement of the larvae in the micro channels becomes more sluggish and 

discontinuous. Figure 2.11 shows the upper limit of the levamisole dose that was useful for O. 

dentatum larvae in the microfluidic device. At a dose of 2.2 μM of levamisole, the SENS 

isolate lost some of its ability to make sinusoidal movements but LEVR retained this capacity. 

As shown in Figure 2.8, the forward velocity can still be measured in and above this range 

concentration of drug, until the larvae is completely paralyzed. This drug concentration limit 

is reached at 10 μM of levamisole for the SENS isolate and at 30 μM for the LEVR isolate.  
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Figure 2.11: There are distinct changes in the locomotion patterns of O. dentatum larvae in 

the microfluidic device at higher concentrations of levamisole (above 3 M). (A, B) Upon 

exposure to 5 µM levamisole, the natural sinusoidal movement of SENS larvae is distorted 

with longer migration time, occasional curling, and retraction from forward movement. (C, D) 

At the same drug concentration, the movement of LEVR larvae is not perturbed with 

insignificant changes in their locomotion parameters. 

  Although our focus for this study was on the detection and characterization of the 

phenotypes of parasitic larvae that are associated with anthelmintic resistance, the methods 

are also likely to complement reverse genetic experiments where gene knockdown, knockout 

or transgenic experiments [20] may produce subtle locomotory phenotypes. 

  The time required for data analysis and parameter extraction will be significantly 

improved by using automated nematode tracking software. Several groups have developed 

such worm tracking software that automatically calculates parameters such as forward 

velocity, oscillation frequency, and body bending for C. elegans [31, 39, 40]. Currently, we 

use MATLAB to calculate body parameters which takes considerable amount of time. As the 

next step, we are working towards automating the entire data recording and analysis steps by 
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adding a movable test stage and developing a user-friendly program for tracking nematodes 

in the micro channels and extracting their locomotion parameters.       

We point out that, as with any bioassay, our method has potential sources of error. A 

number of factors need to be controlled and be minimized to have minimal error. For 

example, movement of the larvae will be reduced by a temperature reduction. This requires 

that collection of the data for comparison be made at the same temperature. We also found 

that as the age of the larvae increased, there was a gradual decrease in the velocity of 

movement; thus variation between isolates, even those that are drug sensitive may be 

anticipated. However, we do expect that despite some phenotypic variation between drug-

sensitive isolates, that they will show sensitivity to the drug under test, in contrast to the 

resistance isolates. Despite potential limitations, we think that these sources of error can 

readily be controlled for and that our microfluidic assay offers an improved and higher level 

of resolution compared to worm migration assays. 
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Chapter 3 

Automated Screening of Nematodes in Sinusoidal Microfluidic Channels 

3.1 Introduction  

  As introduced in Chapter 2, nematodes such as O. dentatum and C. elegans inherently 

move in a sinusoidal manner [30]. Today, there are various new strains of these nematodes 

either created by genetic modifications or naturally occuring in the soil environment. As 

discussed in Chapter 2, some of these strains can be distinguished from one another by 

carefully observing differences in their locomotion parameters. Our work in straight channels 

was motivated by a drive in the scientific community for new high-throughput worm 

screening and sorting platforms. In the various worm sorters reported, researchers primarily 

immobilized (by suction or cooling) the organism in microchambers to record time lapsed 

images of the worm body. Computer programs analyzed the images to give information of 

the worm type based on measured body parameters (such as amplitude, wavelength).  In such 

devices, the use of anesthesia is avoided which may induce long-term effects on the worm 

physiology.  

  In this chapter, we proposed a simple and new method of automatically sorting 

various strains of a certain nematode species. Unlike previous devices that use sophisticated 

algorithms to control worm transport and the microfluidic valves, the proposed design 

requires no moving components and is entirely passive in operation. Here, sinusoidal 

channels are fabricated using soft lithography technology and nematodes are allowed to pass 

through channels. The thickness of the sinusoidal channel is adjusted to be slightly greater 

than the thickness of the worm body. Extensive tests were conducted on several designs of 
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sinusoidal channels varying in amplitude and wavelength. Designs were also created where 

the amplitude (amplitude modulated AM) or the wavelength (frequency modulated FM) 

changed gradually along the length of the chip. We focused on two different isolates of the 

Oesophagostomum dentatum (levamisole-sensitive SENS and levamisole-resistant LEVR). 

Our hypothesis was that worms whose natural amplitude and wavelength matched that of the 

sinusoidal channel would move faster through that section. Beyond the ‗adaptable range‘, the 

worms would find it difficult to push forward and would eventually retract or stay immobile. 

Based on our result summarized in Chapter 2 [22], the locomotion parameters of the 

nematode‘s sine-waves are directly related to the phenotype, age and vigor of the worms. We 

would expect that different nematode strains (that even though are visually indistinguishable) 

would show distinct movement patterns through the sinusoidal channels. By defining a 

number of parameters (e.g. cut-off region, stopping probability, average velocity), we would 

be able to segregate and sort different strains.  

  The original idea of putting nematodes in sine-wave channel of fixed dimensions was 

introduced by Lockery‘s group [25] where they showed that C. elegans can adapt to different 

dimensions of channels. Their work was mainly focused on introducing the idea of ‗artificial 

dirt‘ and microfluidic devices to the nematode community and their work was limited to 

sinusoidal channels with fixed parameters. Extending this work, we designed a broad range 

of sinusoidal channels, defined a set of locomotion parameters for the fixed sine-wave device, 

and proposed modulated sine-wave channels with a new application on screening and sorting 

nematode strains. To automate the process of data extraction and analysis, an image tracking 
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software was developed to collect and analyze the large amount of data. Detailed data 

analysis shows the practical use of the developed system as a simple worm sorter.     

3.2 Fixed Sine-wave Devices 

3.2.1 Sinusoidal Channel Designs 

Design 1 

  A sinusoidal wave has two parameters: wavelength (λ) and amplitude (A). To 

fabricate a microfluidic channel shaped as a sine-wave, two additional parameters are 

required: channel horizontal width and vertical height.  The optimal dimensions of the 

amplitudes and wavelengths were obtained from our previous work on wavelength and 

amplitude characterization [22]. We reported a wavelength of 372.9 ± 7.1 µm (mean, ± s. e., 

n = 32) and 393.1 ± 4.6 µm (mean, ± s. e., n = 35) for SENS and LEVR respectively. The 

body width of O. dentatum is around 18 µm [22]. Based on this information, we selected a 

set of amplitude and wavelength combinations for designing the sine-wave devices. The 

wavelengths were chosen to be 132 µm, 198 µm, 264 µm, 330 µm, 396 µm and 462 µm; 

each with an increment of 66 µm. The amplitudes are chosen as 60 µm, 120 µm and 240 µm. 

The channel width was chosen to be wide enough to allow smooth passage of the worm body 

but narrow enough to limit the errors in maximum channel wavelength and amplitude. The 

sine-wave channel width is set at 30 µm. The combination of 18 (=6×3) of different 

wavelengths and amplitudes were designed using AutoCAD and sent to a commercial vendor 

(Fineline Imaging, Colorado Springs, CO) for mask generation. As shown in Figure 3.1, each 

design accommodates three different wavelengths in one channel. Figure 3.2 shows a set of 

snapshots of fabricated devices. 
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Figure 3.1: Fixed Sine-wave Channels: (a) an overview of a sine-wave chip. It includes 3 

identical channels, each consisting of 3 sections with different wavelengths. There are input 

and output ports on either side of the device for worm entrance and exit. (b) A sample sine-

wave with wavelength of 198 µm, amplitude of 120 µm and channel width of 30 µm.  

 

Figure 3.2: A set of snapshots of a single nematode confined in sine-wave channel of fixed 

amplitude and changing wavelengths. The amplitude here is 120 µm. 

 

Design 2:  
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  The previous design of three identical sine-wave channels in a chip provided a basis 

for conducting rigorous high-throughput tests on nematodes. From the preliminary 

experiments, we realized the limitations of design 1. These sine-wave channels confined the 

movement of the nematodes in a restricted space. But this confinement also limited the 

number of worms that could be observed in a single experiment. This is because the worms 

prefer to move in unrestricted channels (similar to straight channels in Chapter 2) rather than 

in confined sine-wave trenches. This reduced the experimental throughput and reduced the 

number of samples available for a given test run. We focused our efforts on improving the 

testing efficiency. 

  We discovered several ways to reliably insert the worms into the sine-wave channel 

and allow them to continue with forward movement. One of the ways which proved effective 

was to use of a syringe to pull the solution from the output port of the channel while the 

nematodes were kept in the input port. The method proved to be effective and repeatable. 

However, during this mechanical suction, the nematodes have the potential of getting injured 

by the high suction pressure. As a result, this method could not conserve the viability of the 

worms and could likely affect the experimental result. To make sure worms are still viable 

and moving in a natural manner, a passive method of worm insertion was required.  

  For certain species of parasitic nematodes, there are specific attractants or deterrents 

(such as food or citric acid) to entice the worms to explore into the channel. However, this 

would add additional chemicals into the worm‘s body which may have an unknown effect on 

its natural movement. We wanted to avoid the use of any external chemical factors. 
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  To increase the time efficiency and throughput of the experiment, a simple approach 

would be to increase the number of sine-wave channels per chip. Considering the fact that the 

cost of chip fabrication is relatively cheap, the maximum area of the chip was decided based 

on the maximum field of view under the microscope. We sought to increase the density of 

devices on a single chip by efficiently using the total area.  

  As in previous designs, the maximum density of channels in one single chip is 

decided by the area occupied by the input/output ports. These ports serve as a connection to 

the outside world (with syringe and tubing) and cannot be easily scaled down. In our 

experiments, the design rule sets the port diameter as 2 mm in and with an inter-port spacing 

of 5 mm. We proposed a design having multiple channels sharing a single input/output port, 

as shown in Figure 3.3. This mitigates the design limitations set by the size of individual 

ports. With this approach, we were able to pack much more channels into one single chip and 

increase the experiment efficiency and throughput. In this structure, the upper limit on the 

number of channels per port is set by the design rule of the mask (i.e. the minimum spacing 

between adjacent channels).  

 

Figure 3.3: High throughput chip with sinusoidal wave channel (design 2). In this graph, we 

show 5x4 channels packed in a single chip. Five channels share one same input/output port. 

This increases the throughput of the chip by seven times (from 3 channels per chip in design 

1 to 20 channels per chip in design 2). 
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3.2.2 Device Fabrication 

  The microfluidic devices were designed to have multiple sinusoidal wave channels; 

each set of five channels with its individual input and output ports. The device dimensions 

can be easily altered at the design stage to be adapted to a certain species of nematodes and 

the desired experimental goal.  

  The device fabrication is done using standard micromachining and soft lithography 

procedures [38]. The mask layout is designed in AutoCAD and sent to an outside vendor 

(Fineline Imaging, Colorado Springs, CO) to generate the masks. A 40 µm-thick SU-8 

photoresist (Microchem Corporation, Newton, MA) is cast on a bare three-inch silicon wafer 

by spin coating at 1000 r.p.m.. 

   Compared with the structure reported previously in Chapter 2, the fabrication of the 

device is carried out with carefully controlled parameters as the channels are not straight and 

device density is increased significantly. The upper limit of the packing number of the 

channels into a given region is mainly set by the photo resistor used and the aspect ratio. The 

exposure time was carefully adjusted to prevent any overexposure or underexposure of the 

SU-8. The post-exposure baking time is adjusted to provide adequate adhesion to the silicon 

wafer while still keeping it susceptible for SU-8 development. A hard bake step after the 

development step was often required to improve the adhesion of the SU-8 to the silicon 

substrate.  

  The PDMS pre-polymer (Sylgard-184 Silicone Elastomer Kit, Dow Corning 

Corporation, Midland, MI) was cast over the SU-8 mold and cured on a hot plate at 70C for 

two hours. Subsequently, the PDMS microfluidic devices were peeled off the mold and 
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input/output ports (2 mm diameter) were created using a sharp needle. The PDMS device and 

glass cover slip were then treated with methanol spray to modify the surface property from 

hydrophobic to hydrophilic. After methanol treatment, air plasma was used to expose PDMS 

devices and glass cover slips, both of which are then bonded together. One of the masks is 

shown in Figure 3.3. One of the fabricated microfluidic chips is shown in Figure 3.4 along 

with nematodes moving through the sealed sine-wave channels. 

 

Figure 3.4: Microphotographs of fabricated sine-wave channels in an experiment. The 

wavelength is at 330 µm and the amplitude is at 120 µm. Five channels share one 

input/output ports (not shown in figure) to efficiently utilize of the chip area without 

compromising the image resolution and field of view. A total of 20 sine-wave channels are 

packed in one device to increase the experimental throughput. On-chip markers and rulers are 

included for calibration purpose. 

3.2.3 O. dentatum Larvae as Test Nematodes 

  Levamisole-sensitive (SENS) and levamisole-resistant (LEVR) O. dentatum used in 

the experiment is the same as in Chapter 2. The culture and preparation of these biological 
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samples is discussed previously. It is worth mentioning that the bodies of both isolates 

(SENS and LEVR) are visually indistinguishable under a microscope and, in nature, there are 

apparently more strains of the O. dentatum species with varying levels of drug resistance. 

Our goal is to devise a method to automatically distinguish these isolates passively (without 

the application of any chemicals) by passing them through sine-wave channels and observing 

them at real-time. 

3.2.4 Sample Preparation and Loading 

  A small volume (1mL) of nematode solution was pipetted and centrifuged at the 

speed of 3000 r.p.m. to increase the worm density to about 100/µL. Later, around 0.36 µL of 

worms was pipetted and filled into each of the four input ports of the microfluidic device. 

Care was taken to ensure that input ports of the channels do not trap any air bubbles. Air 

bubbles block the path of nematodes and can aggregate or migrate in the microchannels. 

After 5 to 15 minutes (the scouting time), the nematodes enter the sine-wave channels from 

the input ports and moving through the channel towards the output ports.     

3.2.5 Data Capture and Analysis 

  Similar to the instrumentation used in Chapter 2, the nematodes were observed with a 

Leica MZ16 transmission stereomicroscope using magnifications from 7.1x to 230x. In this 

experiment, the magnification is set at 1.25x10. A QICAM 12-bit Mono Fast 1394 Cooled 

digital camera interfaces with a QCapture Pro software for capturing individual digital 

images and image sequences. Image sequences of nematode movement were recorded at a 

time interval of one second and with a resolution of 1392 x 1040 pixels. The recorded videos 

were saved in uncompressed .avi video format.  These videos were later imported into a 
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custom image tracking software where individual frames are analyzed. The details of the 

tracking software are described in Appendix1. An actual distance to pixel distance ratio was 

calculated by measuring the pixel width of a channel of known width using the QCapture Pro 

software toolbox.  This ratio was used to translate pixel measurements to actual distance for 

the calculation of nematode velocity, amplitude and wavelength.  

3.2.6 Calculation of Locomotion Parameters 

  Nematodes with unimpeded forward propagation exhibit a consistent velocity over 

distances much longer than their body length.  Worm average velocity is defined here as ratio 

of the continuous forward linear distance traveled by the nematode‘s centroid to the time 

duration.  In our experiments, the videos were analyzed using the custom program to produce 

a ―.csv‖ file containing data sets of worm‘s centroid position as a function of lapsed time. 

This data set of centroid position is used to plot the track of an individual nematode. Average 

velocity over a certain length of the track was measured by obtaining the total length traveled 

by the centroid of a nematode between a certain number of image frames (minimum 7) taken 

at one-second time intervals.  This distance is then divided by the total number of frames 

between the beginning and ending worm positions to obtain an average velocity in µm sec
-1

.  

This data analysis is done by PERL script language. Comparison is made between the 

average velocity calculated manually and the average velocity extracted by the PERL script. 

There was consistency between the two methods of data calculation. 

   Combined with the computer-aided image tracking software, we attempted to make 

this technique of experimentation, data recording, and analysis as automated and reliable as 

possible with the available technology. 
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3.2.7 Experimental Results 

  Figure 3.5 shows a comparison of the velocity of the two isolates of O. dentatum 

nematode (SENS and LEVR) when passing through different fixed sine-wave channels, each 

with a different wavelength and a fixed amplitude of 120µm.   

  The velocity measurements show a peak at the center where the wavelength of the 

sine-wave channel closely matches the natural wavelength of the nematode. At both lower 

side and higher side of the wavelength axis, the velocity shows a clear drop.  For the SENS 

isolate, we noticed that the velocity data point at 396 µm is similar to its velocity at 330 µm, 

while we noticed a significant difference for LEVR at these two data points. The LEVR 

velocity is much faster in the λ =396 µm channel than in the λ =330 µm channel. 

Amplitude=120m

0 100 200 300 400 500

40

60

80

100

120 LEVR

SENS

Wavelength(m)

V
e
lo

c
it

y
( 

m
/s

)

 

Figure 3.5: The velocity plots of the two different isolates of O. dentatum nematode (SENS 

and LEVR) in fixed sine-wave channels having different wavelengths. The x axis denotes the 

wavelength. The amplitude of the channel is fixed at 120 µm. 
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  Referring to the wavelength measurement reported in Chapter 2, we noticed that 

LEVR is measured to have a higher wavelength than SENS (SENS 372.9 ± 7.1 µm (mean, ± 

s. e., n = 32) and LEVR 393.1 ± 4.6 µm (mean, ± s. e., n = 35)). This confirms our previous 

hypothesis that the nematode will move faster when the channel parameters are most closely 

resembled its their natural locomotion parameter. In our case, the channel width λ =396 µm 

closely matches the reported LEVR wavelength.   

  This initial result indicates a potentially fast and automated method of distinguishing 

two different isolates of a sample parasitic nematode species. By testing the worms‘ 

responses to two custom-made sine-wave channels and comparing their responses by 

measuring their average velocity, we would be able to distinguish one isolate from the other 

one. With the help of image tracking and analysis software, this proposed testing method can 

be carried out automatically and relatively fast compared to manual calculations. 

  The velocity results of the isolates (SENS and LEVR) in other two sets of 

microfluidic devices (at fixed amplitude (A =60 µm and A =240 µm)) are also shown in 

Figures 3.6 and 3.7. We notice that there is a clear reduction of velocity in sine-wave 

trenches having these two amplitudes. This is due to the fact that these amplitudes are not 

close to the natural amplitude of the worm. This increases the challenge posed to the worms 

to move forward, thereby slowing down their measured velocity. No significant difference is 

observed between SENS and LEVR isolates since the amplitudes of the sine-wave trenches 

are far from the natural parameters which hide any underlying differences observed earlier in 

Figure 3.5. One interesting observation from Figures 3.6 and 3.7 is that there are two distinct 

peaks in the velocity plots for both isolates at the sine-wave amplitude of 60 µm.  One 
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possible explanation is that, at each peak, the A/λ ratio of the sine-wave channel matches the 

natural A/λ ratio of the worms [23]. At the peak, both the amplitude and wavelength are 

almost halved at these two data points.  
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Figure 3.6: Velocity plots for the LEVR isolate in sine-wave channels. The x axis denotes 

the wavelength. The amplitude of the channel here is 60 µm, 120 µm and 240 µm. 
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Figure 3.7: The velocity plots for the SENS isolate in sine-wave channels. The x axis is the 

wavelength. The amplitudes of the channels are 60 µm, 120 µm and 240 µm respectively. 
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3.3 Frequency Modulated (FM) Sine-wave Channels 

3.3.1 FM Channel Designs  

The previous sinusoidal wave channels with various combinations of wavelengths 

and amplitudes (design 1 and 2) provide a good approach to investigate the nematode 

response in a predefined sine-wave confinement. The limitation of the design is that prior 

knowledge of device dimensions is needed and the number of devices being tested is 

unrealistic for testing multiple isolates or species. However, in an actual worm sorting 

application, we may not often have knowledge about the nematode‘s locomotion parameters 

which may alter with age or environmental factors (e.g. temperature, drugs). An ideal worm 

sorter should be able to identify and differentiate various known and unknown strains in a 

minimum number of trials.  

Our previously discussed sine-wave designs could be improved by designing sine-

wave channels with a continuously changing amplitude and wavelength parameters. In the 

field of electronic communication theory, this is called amplitude modulation (AM) or 

frequency modulation (FM) where the amplitude or wavelength of the sine-wave channel is 

‗chirped‘ or modulated. In an analogous manner, we borrow these acronyms here to describe 

the new worm sorting devices. This method allows us to investigate the nematode response 

with different locomotion parameters without prior knowledge about these parameters. One 

huge advantage of the proposed modulated channels is an off-the-shelf sinusoidal wave 

channel could be used to test various types of isolates. This provides ease of mass production, 

lower cost, faster screening and attractiveness as a disposable chip for field applications. 
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a) Amplitude-Modulated Channel

b) Frequency-Modulated Channel

a) Amplitude-Modulated Channel

b) Frequency-Modulated Channel

a) Amplitude-Modulated Channel

b) Frequency-Modulated Channel

Furthermore, there is an additional possibility of collecting more information about 

the mechanical strength of isolates from these measurements. Currently, mechanical force 

sensors are used to measure the contractile forces of nematodes but are limited to large 

nematodes. In our devices, for example, we would be able to indirectly measure the force 

applied by the nematode to push forward. Our previous work has shown that this tangential 

force is related to the ratio of worm‘s amplitude to wavelength. Both AM and FM channels 

would challenge the worm to conform its body to the channel dimensions and to push against 

the channel sidewalls to move forward. This challenge would keep rising as the modulation 

is increased along a single device. Eventually, the worm would reach a certain section of the 

device beyond which it fails to move forward. Here the worm would either stop or retract. 

This cut-off point or range would be identified for each nematode isolate and the information 

subsequently used to differentiate isolates in a mixed population. We now demonstrate this 

simple approach of sorting worm isolates. Figure 3.8 shows two examples of AM and FM 

channels. 

 

 

 

 

Figure 3.8:   The two types of modulated channels: amplitude modulation and frequency 

modulation. The AM and FM masks are shown on left while snapshots of single worms in a 

section of FM channel is shown on right. 
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The Equation (3.1) shows an expression for a frequency modulated sine wave channel. 

If the wavelength    varies linearly with the x coordinate in a channel aligned in the x axis, 

the y coordinate is calculated to be                          , where    and    are all 

constant coefficient and   is the amplitude of the sinusoidal wave. 

               

  y          
   

    
        

   

      
          Equation (3.1) 

The FM sinusoidal wave channels are designed to have the wavelength variation in 

the range from 10 µm-718 µm. The amplitude of the sine-wave is set fixed at 135 µm which 

closely matches O. dentatum’s natural wavelength. The width of the channel is set at 30 µm. 

To ensure smooth entrance of the worms into the channel from the input port, the initial 

section the microfluidic chip is designed to have a wavelength similar to the nematode‘s 

natural wavelength. One input/output port is shared by multiple (three) channels to increase 

the throughput and efficiency. A total of four input/out port ports are included in a single 

chip. The entire channel is 3 to 4 cm long.  

3.3.2 Device Fabrication 

The experimental setup and fabrication are similar to that discussed in Section 3.2.  

Figure 3.9 shows a microphotograph of FM sine-wave chip used in an experiment.  
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Figure 3.9: Fabricated FM sine-wave channels. On the left side of the channel, the 

wavelength is 424 µm and on the right side wavelength is at 310 µm. The wavelength 

gradually changes from one side to the other side. Three channels shares one input/output 

port (not shown in figure) to make fully utilization of the area and total 12 channels are 

packed in one device to increase the throughput. 

3.3.3 Extraction of Locomotion Parameters 

  Average Instantaneous Velocity: The nematodes with regulated forward movement 

exhibit a gradually changing velocity over varying wavelength along a FM device. A worm‘s 

instantaneous velocity is defined as centroid position difference traveled by the worm‘s 

centroid over a short time period (<10 sec).  In our experiments, the videos are analyzed 

using the custom tracking software written using C++ which generates a .csv file with 

centroid position data along time for each worm track. The video is taken at the speed of 1 

frame per second. Each instantaneous velocity data is calculated and associated with its 
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current position. The position is linked to a corresponding wavelength and amplitude. These 

velocity data are grouped section-wise according to the designed wavelength or amplitude on 

the chip. This post data analysis procedure is completed by PERL script program. 

  Cut-off Region: The nematodes face gradually increasing challenge along the FM 

sine-wave channels before they eventually fail to response. These are regions where the 

nematode cannot pass through [25]. We call these sections as cut-off regions defined as 

locations where the nematodes are able to reach but unable to cross. These regions can be 

easily identified by a visual check. The continuously modulated sinusoidal channels provide 

us this unique benefit that is relatively difficult and time-consuming to test in the fixed 

wavelength or amplitude channels. 

  Turns and Stops: During the experiment, we noticed that, as the channel challenge 

increases, the velocity decreases and so do other locomotion parameters that carry 

information about the worms‘ struggle in forward movement. One noticeable effect is as the 

amplitude increases, the movement of the nematode occurs with frequent stops. The number 

of turns and stops is apparently higher in more challenging sections of the AM or FM devices. 

The turns and stops are grouped for every section according to the predefined sets of trench 

wavelengths and amplitudes. Later, we normalize these data by dividing using the number of 

frames they travelled to make a fair comparison between the different experimental runs. 

3.3.4 Experimental Results 

We tested two isolates of O. dentatum: LEVR and SENS. The average velocity shows 

high value at wavelengths which match the nematodes‘ natural wavelength, as shown in 

Figure 3.10.  As the FM trench wavelength shifts either side of this peak, the velocity 
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gradually drops. We noticed that, in most outer sections, the SENS has a lower velocity than 

LEVR. The SENS has a peak at a smaller wavelength than the LEVR. This is consistent with 

the result reported in Chapter 2 where the SENS has a smaller wavelength than LEVR.  

Comparing individual responses of the isolates, we noticed that the LEVR is able to 

adapt better than SENS at FM sections of extreme wavelengths. The velocity changes are 

more gradual for LEVR compared to that for SENS. One possible explanation could be that 

the LEVR isolates not only acquire a higher resistant to the drug levamisole but also improve 

themselves in other facets such as adaptability. This is also confirmed in experimental results 

discussed later. 
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Figure 3.10: The average instantaneous velocity with respect to the wavelength is shown for 

SENS and LEVR O. dentatum larvae. The velocity shows a peak when the channel 

wavelength closely matches the worms‘ natural wavelength and reduces gradually when the 

wavelengths shift to either side. The amplitude of the channel is fixed at 135 µm which is 

selected to match the nematodes‘ natural parameter. We observe a peak in the SENS velocity 

at around 330 µm while the LEVR shows a peak at a slightly longer wavelength. We also 

notice the LEVR velocity is generally higher then SENS at regions far off from the center 

wavelength. 
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The turn probability LEVR and SENS along the wavelength axis are shown in Figure 

3.11. They are post-processed using PERL script after the position data is produced by the 

custom-developed image tracking software.  The turn probability shows a valley with 

gradually changing channel wavelength. When the channel‘s wavelength closely matches the 

natural amplitude, the turn probability shows a dip. As wavelength increases, both SENS and 

LEVR tend to change the direction of forward movement more often, which represents an 

increase in the turn probability.  There is no significant difference observed between SENS 

and LEVR isolates in most sections. 
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Figure 3.11: The measured turn probability with respect to the wavelength is shown for 

SENS and LEVR O. dentatum larvae. The turn probability shows a valley where the trench 

wavelength is similar to the natural wavelength and gradually increases as the trench 

wavelength shifts to either side. The amplitude of the FM channel is at 135 µm. There is no 

significant difference in wavelength between SENS and LEVR larvae at most intermediate 

sections. 
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The stop probabilities for LEVR and SENS are plotted in Figure 3.12. The stop 

probability shows a valley in the middle of the wavelength axis and a steep increase at either 

extreme wavelength value. When the channel‘s wavelength closely matches the nematode‘s 

inherent wavelength, the worms tend to move freely and show less resistance in the 

movement. As wavelength challenge increases, both SENS and LEVR tend to make more 

frequent stops and show an increase in the stop probability.  
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Figure 3.12: The measured stop probability with respect to the wavelength is shown for 

SENS and LEVR O. dentatum larvae. The stop probability shows a dip when the channel 

wavelength is similar to the worm‘s natural wavelength and increases when the wavelengths 

are at high or low end. The amplitude of the FM channel is at 135 µm. There is no significant 

difference between SENS and LEVR larvae at most sections. Interestingly we see a clear 

increase of the stopping probability for SENS at a high wavelength of around 420 µm. This 

corresponds to the fact that SENS has a shorter wavelength than the LEVR and is unable to 

adapt as well as the LEVR isolate. 



www.manaraa.com

65 
 

  
 

The cut-off region is also reported in Figure 3.13. The SENS shows a cut-off region 

of 565-580 µm and LEVR has a cut-off region of 565-580 µm in the FM device. With 3 µM 

levamisole drug solution, the levamisole-sensitive SENS has a large drop in their cut-off 

points while not much difference is observed for levamisole-resistant LEVR isolate. 

 

Figure 3.13: The cut-off region of the wavelength is shown for SENS and LEVR O. 

dentatum larvae.  The cut-off region for both SENS and LEVR drops where 3 µM levamisole 

drug applied, but the SENS has a much more significant drop. This coincides with the fact 

that SENS is more sensitive and tends to lose more vigor when exposed to drug. 

3.4 Amplitude Modulated (AM) Sine-wave Channels 

3.4.1 AM Channel Designs 

Similar to the FM channels, amplitude modulated (AM) sine-wave channels are 

designed to investigate the response of nematodes to challenges of increasing or decreasing 

trench amplitude. In these AM channels, the amplitude of the sine-wave is gradually 

changing from one side to the other side of the channel. Based on the nematodes‘ natural 
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amplitude, it is expected that nematodes will have reduced velocity along the channel and 

eventually fails to proceed forward beyond a certain section.  

Equation (3.2) shows an expression for an amplitude modulated sine wave channel. If 

the amplitude    varies linearly with the x coordinate in a channel aligned in the x axis, the y 

coordinate is calculated to be                   
   

 
 where    and    are all constant 

coefficients and   is the wavelength of the sinusoidal wave. 

           
   

 
               

   

 
           Equation (3.2) 

The AM sinusoidal channel is designed to have the amplitude changing from 10 µm 

to 399 µm. The wavelength of the sine-wave is set to 360 µm, which close matches the 

nematode‘s natural wavelength. Similar to FM channel, the microfluidic chip is designed 

here to have an input section starting at the nematode‘s natural amplitude to allow smooth 

entrance of worms into the channel. One input/output port is shared by multiple (three) 

channels to increase the experiment throughput and efficiency. A total of four input/output 

ports are accommodated in a single chip. The width of the channel is set at 30 µm. The 

number of the channels per device is limited by the mask design rule which is directly related 

to the fabrication process. A higher channel density could be realized in a well-controlled 

fabrication process and can be benefited from advanced soft lithography process, i.e. high 

resolution of mask, improved aspect ratio of SU-8 mask.  

3.4.2 Device Fabrication, Experimental Protocols and Data Analysis 

The experiment, fabrication and data analysis are similar to Section 3.3. Average 

instantaneous velocity, turn probability and stop probability are extracted and reported. 
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Figure 3.14 shows a micro photograph of an AM sine-wave chip taken in one experiment. 

The worms enter into the channels at a wavelength of 135 µm and face increasing challenge 

with increasing amplitude as they move forward along the channel. Markers and rulers are 

designed for calibration purpose.  

 

Figure 3.14: Amplitude modulated sinusoidal wave channels. On the left side of the channel, 

the amplitude is around 198 µm and on the right side amplitude is at 135 µm. The amplitude 

changes gradually in between these two extremes. Three channels share one input/output port 

(not shown in figure) to make fully utilization of the area and increase throughput. Markers 

was added for calibration purpose 

3.4.3 Experimental Results 

We tested the two isolates of O. dentatum LEVR and SENS. Their average 

instantaneous velocities are analyzed using the developed imaging tracking software and post 

processed using PERL script.  The velocity is gradually changing along the amplitude axis. 

Both LEVR and SENS show a peak velocity in the amplitude region between 160-220 µm.  

These regions are close to their inherent amplitude. As amplitude challenge increases, both 
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SENS and LEVR isolates show a drop in the average velocity. We notice the SENS isolate 

has a velocity generally lower than LEVR at the extreme regions.  The curves are plotted in 

Figure 3.15. The difference in their response verifies our previous conclusion for FM 

channels: the LEVR isolate is more active and adaptable than SENS.  
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Figure 3.15: The measured average instantaneous velocity with respect to the amplitude for 

SENS and LEVR O. dentatum larvae. The velocity curves exhibit a peak when the trench 

wavelength is similar to the natural amplitude and drops when the amplitude is at extreme 

values. The wavelength of the channel is set at 360 µm. As the trench amplitude increases or 

decreases away from the peak value, the velocity of SENS reduces significantly more than 

LEVR isolates. 

 

The turn probability LEVR and SENS are plotted in Figure 3.16. They are post-

processed using PERL script after the position data is generated by the image tracking 

software.  The turning probability shows a valley in the center. When the channel amplitude 
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closely matches the natural amplitude of the nematode, the turning probability shows a low 

plateau region. As amplitude challenge increases, both SENS and LEVR tend to change their 

moving direction more often and this increases the turn probability. We noticed that the dip 

of SENS worm is apparently at a higher position then the LEVR. This corresponds to the 

result reported in Chapter 2 where the SENS isolate has a higher amplitude. Although their 

velocity curve does not clearly reflect the difference in worms‘ natural amplitude, it is worth 

mentioning that the plots of their turning probabilities clearly show a difference. 
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Figure 3.16: The measured turn probability with respect to the amplitude is plotted for O. 

dentatum SENS and LEVR larvae. The wavelength of the channel is at 360 µm. There is no 

significant difference in turn probability between SENS and LEVR larvae at most channel 

sections. The position of the valley for SENS is apparently higher than LEVR.  

The stop probabilities for LEVR and SENS are plotted in Figure 3.17. The stop 

probability shows a similar shape as Figure 3.16: a low flat in the central part of the 

amplitude axis and a steep increase at extreme amplitudes. When the channel‘s amplitude 

closely matches the natural amplitude of the isolates, the nematodes tend to move freely and 
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make fewer stops. As amplitude challenge increases, both SENS and LEVR tend to make 

more frequent stops, showing an increase in the stop probability.  
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Figure 3.17: The measured stop probability with respect to the amplitude is shown for SENS 

and LEVR O. dentatum larvae. The stop probability shows a dip when the channel amplitude 

is similar to the worm‘s natural amplitude and steadily increases when the amplitude is at 

extreme values. The wavelength of the channel is at 360 µm. There is no significant 

difference between SENS and LEVR larvae at most data sections. However, similar to the 

turn probability case, we also observed the curve dips for SENS and LEVR happen at 

different points. The valley for SENS happens at apparently higher positions than LEVR. 

This is possibly because the SENS is reported to have larger amplitude than the LEVR [22]. 

The cut-off region is plotted in Figure 3.18. The SENS isolates shows a cut-off region 

at the channel amplitude of 310-325 µm while the LEVR nematode has a cut-off region at 

the channel amplitude of 350-365 µm. Although SENS has a larger amplitude, as reported in 

[22], the cut-off point observed is lower than LEVR. This reflects the LEVR isolate has a 
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stronger ability to exploring surroundings and a stronger adaptability. Upon exposure to 3 

µM levamisole, SENS has a large drop in its cut-off point while there is no significant drop 

for the LEVR isolate.  

 

Figure 3.18: The cut-off region in AM device is shown for SENS and LEVR O. dentatum 

larvae. The cut-off region (for both SENS and LEVR) drops upon exposure to 3uM 

levamisole a, but the drop is significant for SENS. This shows the higher levamisole 

resistance of LEVR isolate compared to the SENS isolate.  

 

 

3.5 Discussion 

  In this chapter we presented a microfluidic method of differentiating two strains of a 

sample nematode species. For this, we used multiple sets of frequency-modulated and 

amplitude-modulated sine-wave channels to characterize nematode response with defined 
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locomotion parameters. Instead of passively extracting the nematodes‘ locomotion 

parameters from biological experiments, we allow the worms to challenge themselves 

through these passive devices and demonstrate differences in locomotion parameters. We 

showed that the locomotion behavior is different for the two nematode isolates tested: SENS 

and LEVR of O. dentatum larvae.  We are the first group to propose such a modulated 

sinusoidal wave channel device as an automated worm sorter. We confirmed that the LEVR 

isolate is better adapted to these devices compared to the SENS isolate. This valuable 

information gathered from the conducted experiments was used to distinguish the SENS from 

the LEVR isolate.   

  The sine-wave microfluidic channels provide a new and easy way for detection of 

drug resistance in other strains and possible application for reverse genetic experiments. The 

real-time monitoring of worm adaptability in AM/FM wave channels is attractive because of 

the ability to screen and sort worms based on differences in their adaptability and inherent 

mechanical strength. This is in contrast to manually measuring locomotion parameters of 

nematodes in straight channels which is tedious and with low throughput. The AM/FM 

channels do not require prior knowledge of worm physiology or locomotion parameters. An 

off-the-shelf AM/FM channel can be used to test different known or unknown species of 

parasitic nematodes in a mixed population. This is particularly appealing for field 

applications where nematodes of mixed phenotype and genotype can be found. In addition, 

our design allows us to run multiples of experiments (each in an individual channel) 

simultaneously and record the nematode movement simultaneously from all the channels. 
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  This research work on AM/FM devices has been successfully demonstrated on other 

nematode species such as C. elegans by our group. 
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Chapter 4 

Conclusions and Future Scope 

  We reported a novel charge-sensing platform using an extended floating-gate device 

(UGFET) that is scalable and fully compatible with standard CMOS process. Simulation 

results based on finite element analysis predicted a high sensitivity: 150 pC of charge per 

mm
2
 on the sensing area produces ~1V change in the floating-gate voltage. We fabricated the 

UGFET charge sensor. The UGEFT transconductance and subthreshold measurements 

verified that the UGFETs show markedly different responses with polyelectrolytes and poly 

amino acids of varying polarity and concentration. This neuromorphic sensing method is 

nondestructive, repeatable, reusable, and easily refreshed. Since most biological species 

(single cells, proteins, DNA) have intrinsic charge, UGFET charge-modulated microarrays 

could serve as fast, portable, and inexpensive alternatives for biochemical sensing 

applications.  

  We presented a worm motility device for measuring phenotypic variations and drug 

dose response across nematode isolates and species with increased throughput and sensitivity. 

We identified significant differences in morphological parameters (i.e. wavelength, 

amplitude, tangential force) and locomotion parameters (i.e. oscillation frequency, average 

forward velocity, and track signatures) among the different groups of nematodes studied. An 

automated image tracking program is developed as a faster way to analyze data and extract 

track signatures that correlate to the resistance levels of individual isolates. Our method of 

identifying differences in worm parameters could possibly provide a means of sorting a 

mixed worm population with improved sensitivity and throughput.  
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  Lastly, we reported a new bioassay as a worm sorter. We designed and fabricated 

frequency and amplitude modulated sine-wave channels and applied it to automatically 

screening drug resistance of nematodes. We were able to observe changes in worm 

locomotion using a predefined set of parameters. Our experiments show that the two isolates 

have different locomotion phenotypes in the sinusoidal wave channels. The technique 

reported here would lead to the development of a simple, flexible, and robust platform to 

conduct high-throughput drug screening on parasitic nematodes. 
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Appendix 1 

Image-tracking Software 

  In Chapter 3 our work utilizes an image tracking software for video analysis. This 

appendix gives a short description of our image tracking software.  Figure A.1.1 shows a 

sample graphic user interface for the software and Figure A.1.2 shows a screenshot of a 

running video data analysis. 

  The worm tracking program runs the recorded videos through a number of steps to 

negate the background and extract worm motility parameters. Worm density and movement 

do not adversely affect the tracking system, though increased worm contact were seen to 

interrupt their tracking. 

  There are totally three steps in the video analysis process.  

 

Figure A1.1: A sample graphic user interface for the image tracking software. 
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Figure A1.2: A screenshot of a running video data analysis. 

  The first step is background negation. This step is used to negate the channel walls, 

other markings, and any particulates. It is able to identify the background in the presence of 

many worms by comparing a series of images over the duration of the input video. As the 

worms moving forward, they expose new parts of the background. For each successive image, 

areas that were lighter than previous frames were added to the background model. 

Combining a number of frames in this way produced a complete background model. The 

background is negated from the video and a threshold is applied. This produces an output 

video containing only white worms on an empty black background. 

  The Lucas-Kanade optical flow algorithm is used to compute motion vectors. Worm 

density and movement do not affect the tracking system. It only uses vectors that agree 

across the whole view, ignoring localized movements caused by worms.  The algorithm 

generates motion vectors by tracking image features of the worm which may also have 

included particulates on the substrate or other unwanted patterns incorporated during channel 
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fabrication.  To characterize motion in any direction, the program detects features in the 

image which have both sharp vertical and horizontal components. It also compensates for 

vibrations that occurred during the recording procedure by using the image-feature tracking 

technique.  

  In addition, the users are able to easily provide the program with information about 

specific regions of interest. This specifies the areas of the video that should be processed 

further, ignoring the rest. This allows the user to safely ignore irrelevant data, shorten 

execution time, and use separate sets of data from parallel experiments running in different 

channels. 

  The next step is worm segmentation and recognition. After background subtraction, 

polygons are fitted to the white shapes. Isolated regions such as particulates that do not have 

an interior area were eliminated, leaving only the channel boundaries. This step is used to 

improve performance and accuracy by safely ignoring erroneous data outside the channels 

and also to segregate data from multiple channels. Polygons that are too large or too small 

are discarded. This includes instances where two or more worms were in contact. Worm 

polygons were then matched between consecutive frames to provide tracking data over time. 

If no close match were found in the next frame, which may occur because of worm occlusion 

or worm contact, the track is terminated. If the same worm is recognized in later frames, a 

new track was started. 

  The last step is the extraction of motility parameters. The centroid of the worm at 

each frame is calculated as the centroid of the fitted polygon. The polygon is also used to 

calculate the bounding box to approximate the wavelength and amplitude. The posture of the 
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worm is represented by a series of segments running along its center. The program first tries 

to find a pair of points across the middle of the worm. The points are then alternately 

advanced (first in one direction and then the other) to minimize the distance between the 

points until they meet at the end of the worm. For each successive position of the points, the 

midpoint is added to the worm‘s spline. The spline points are then simplified to thirteen 

equally spaced points. We then extract the track signatures from the gathered data. These 

steps are shown in Figure A.1.3 respectively. 

  The program outputs a position data file in either csv or xls format which can be 

further analyzed by PERL scripts. 

 

 

Figure A1.3: Three processing steps of the raw video from (a) to (b) shows background 

negation, from (b) to (c) shows segmentation and recognition and from (c) to (d) shows 

extraction of motility parameters. Using the image tracking software, the path of the worm is 

extracted out and the instantaneous velocity is calculated. (e) shows a sample instantaneous 

velocity profile of a nematode. 
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For every tracked worm, the output file includes the following: sequential x-y 

position coordinates, instantaneous velocity at each position, number of halts and reversals, 

and instantaneous locomotion amplitude and wavelength. The parameter extraction is made 

adaptable to different nematode species by a preset pixel range specified by the user. In 

addition, the user is able to provide the program with information about regions of interest in 

the recorded videos. This allows the user to safely ignore irrelevant data, shorten execution 

time, and use separate sets of data from parallel experiments.   
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Appendix 2 

Mask Designs for Sine-wave Channels 

a.  

b.  

c.  
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d.  

e.  

f.  

g.  
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h.  

i.  

Figure A2.1 (a, b, c, d, e, f, g, h, i): Snapshots of fixed sinusoidal channels tested in Chapter 

3 

 

a.  

b.  

Figure A2.2 (a, b) Snapshots of the amplitude modulated sinusoidal wave channels 
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a.  

b.  

Figure A2.3: (a, b) Snapshot of the wavelength modulated sinusoidal wave channels 
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